The original observation of the Einstein-de Haas effect was a landmark experiment in the early history of modern physics that illustrates the relationship between magnetism and angular momentum 1, 2 . Today the effect is still discussed in elementary physics courses to demonstrate that the angular momentum associated with the aligned electron spins in a ferromagnet can be converted to mechanical angular momentum by reversing the direction of magnetisation using an external magnetic field. In recent times, a related problem in magnetism concerns the time-scale over which this angular momentum transfer can occur. It is known experimentally for several metallic ferromagnets that intense photoexcitation leads to a drop in the magnetisation on a time scale shorter than 100 fs, a phenomenon called ultrafast demagnetisation 3-5 . The microscopic mechanism for this process has been hotly debated, with one key question still unanswered: where does the angular momentum go on these femtosecond time scales? Here we show using femtosecond time-resolved x-ray diffraction that a majority of the angular momentum lost from the spin system on the laser-induced demagnetisation of ferromagnetic iron is transferred to the lattice on sub-picosecond timescales, manifesting as a transverse strain wave that propagates from the surface into the bulk. By fitting a simple model of the x-ray data to simulations and optical data, we estimate that the angular momentum occurs on a time scale of 200 fs and corresponds to 80% of the angular momentum lost from the spin system. Our results show that interaction with the lattice plays an essential role in the process of ultrafast demagnetisation in this system. 2Broadly speaking, proposed mechanisms for ultrafast demagnetisation fall into two categories: spin-flip scattering mechanisms and spin transport mechanisms. The first category explains the demagnetisation process as a sudden increase in scattering processes that ultimately result in a decrease of spin order. These scattering processes can include electron-electron, electron-phonon, electron-magnon and even direct spin-light interactions. On average, such scattering must necessarily involve a transfer of angular momentum from the electronic spins to some other subsystem(s). Candidates include the lattice, the electromagnetic field, and the orbital angular momentum of the electrons. Numerical estimates and experiments using circularly polarised light strongly suggest that the amount of angular momentum given to the electromagnetic field interaction is negligible 6 , and experiments using femtosecond x-ray magnetic dichroism (XMCD) indicate that the angular momentum of both electronic spins and orbitals decrease in magnitude nearly simultaneously 7-9 . The only remaining possibility for a spin-flip induced change in angular momentum therefore appears to be a transfer to the lattice via spin-orbit coupling, but this remains to be experimentally verified.The second category of proposed mechanisms relies on the idea that laser excitation causes a ...
We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 ± 1.1 ps, which is much slower than the ~1 ps melting times previously observed in other systems. To explain the data we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wavevector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wavevector on these time scales.2
The study of magnetic correlations in dipolar-coupled nanomagnet systems with synchrotron X-ray scattering provides a means to uncover emergent phenomena and exotic phases, in particular in systems with thermally active magnetic moments. From the diffuse signal of soft X-ray resonant magnetic scattering, we have measured magnetic correlations in a highly dynamic artificial kagome spin ice with sub-70 nm Permalloy nanomagnets. On comparing experimental scattering patterns with Monte Carlo simulations based on a needle-dipole model, we conclude that kagome ice I phase correlations exist in our experimental system even in the presence of moment fluctuations, which is analogous to bulk spin ice and spin liquid behavior. In addition, we describe the emergence of quasi-pinch points in the magnetic diffuse scattering in the kagome ice I phase. These quasi-pinch points bear similarities to the fully developed pinch points with singularities of a magnetic Coulomb phase, and continually evolve into the latter on lowering the temperature. The possibility to measure magnetic diffuse scattering with soft X-rays opens the way to study magnetic correlations in a variety of nanomagnetic systems.
Strain is a leading candidate for controlling magnetoelectric coupling in multiferroics. Here, we use x-ray diffraction to study the coupling between magnetic order and structural distortion in epitaxial films of the orthorhombic (o-) perovskite LuMnO(3). An antiferromagnetic spin canting in the E-type magnetic structure is shown to be related to the ferroelectrically induced structural distortion and to a change in the magnetic propagation vector. By comparing films of different orientations and thicknesses, these quantities are found to be controlled by b-axis strain. It is shown that compressive strain destabilizes the commensurate E-type structure and reduces its accompanying ferroelectric distortion.
Critical behavior is very common in many fields of science and a wide variety of many-body systems exhibit emergent critical phenomena. The beauty of critical phase transitions lies in their scale-free properties, such that the temperature dependence of physical parameters of systems differing at the microscopic scale can be described by the same generic power laws. In this work we establish the critical properties of the antiferromagnetic phase transition in artificial square ice, showing that it belongs to the two-dimensional Ising universality class, which extends the applicability of such concepts from atomistic to mesoscopic magnets. Combining soft x-ray resonant magnetic scattering experiments and Monte Carlo simulations, we characterize the transition to the low temperature long range order expected for the artificial square ice system. By measuring the critical scattering, we provide direct quantitative evidence of a continuous magnetic phase transition, obtaining critical exponents which are compatible with those of the two-dimensional Ising universality class. In addition, by varying the blocking temperature relative to the phase transition temperature, we demonstrate its influence on the out-of-equilibrium dynamics due to critical slowing down at the phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.