By a detailed experimental study of THz dynamics in the ribonuclease protein, we could detect the propagation of coherent collective density fluctuations within the protein hydration shell. The emerging picture indicates the presence of both a dispersing mode, traveling with a speed greater than 3000 m/s, and a nondispersing one, characterized by an almost constant energy of 6-7 meV. In agreement with molecular dynamics simulations [Phys. Rev. Lett. 2002, 89, 275501], the features of the dispersion curves closely resemble those observed in pure liquid water [Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2004, 69, 061203]. On the contrary, the observed damping factors are much larger than in bulk water, with the dispersing mode becoming overdamped at Q = 0.6 A(-1) already. Such novel experimental findings are discussed as a dynamic signature of the disordering effect induced by the protein surface on the local structure of water.
The coherent density fluctuations of a perdeuterated dry protein have been studied by Brillouin neutron spectroscopy. Besides a nearly wavevectorindependent branch located around 5 meV, a propagating mode with a linear trend at low wavevector Q is revealed. The corresponding speed of 3780 ± 130 m/s is definitely higher than that of hydrated proteins. Above Q = 0.8 Å −1 , this mode becomes overdamped, with lifetimes shorter than 0.1 ps, in fashion similar to glassy materials. The present results indicate that dry proteins sustain coherent density fluctuations in the THz frequency regime. The trend of the longitudinal modulus indicates that in this frequency range dry biomolecules are more rigid than hydrated proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.