Coronal loops, which trace closed magnetic field lines, are the primary structural elements of the solar atmosphere. Complex dynamics of solar coronal magnetic loops, together with action of possible subphotospheric dynamo mechanisms, turn the majority of the coronal loops into current-carrying structures. In that connection none of the loops can be considered as isolated from the surroundings. The current-carrying loops moving relative to each other interact via the magnetic field and currents. One of the ways to take into account this interaction consists in application of the equivalent electric circuit models of coronal loops. According to these models, each loop is considered as an equivalent electric LCR-circuit with variable inductive coefficients L, capacitance C, and resistance R, which depend on shape, scale, position of the loop with respect to neighbouring loops, as well as on the plasma parameters in the magnetic tube. Such an approach enables to describe the process of electric current dynamics in the groups of coronal loops, as well as the related dynamical, energy release and radiation processes.In the present paper we describe the major principles of LCR-circuit models of coronal magnetic loops, and show their application for interpretation of the observed oscillatory phenomena in the loops and in the related radiation.
Abstract. Low-frequency (LF) modulations of 37 GHz microwave radiation during solar flares, recorded at the Metsähovi Radio Observatory, are considered. A fast Fourier transformation with a sliding window is used to obtain the dynamic spectra of the LF pulsations. We pay attention to the LF dynamic spectra having a specific multi-track structure, which is supposed to be an indication of a complex multi-loop composition of a flaring region. Application of the equivalent electric circuit models of the loops including the effects of electromagnetic inductive interaction in groups of slowly growing current-carrying magnetic loops allows us to explain and reproduce the main dynamical features of the observed LF modulation dynamic spectra. Each loop is considered as an equivalent electric circuit with variable parameters (resistance, capacitance and inductive coefficients) which depend on shape, scale, position of the loop with respect to other loops, as well as on the plasma parameters and value of the total longitudinal current in the magnetic tube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.