This paper presents a novel coding scheme for electrocardiogram (ECG). Following beat delineation, the periods of the beats are normalized by multirate processing. After amplitude normalization, discrete wavelet transform is applied to each beat. Due to the period and amplitude normalization, the wavelet transform coefficients bear a high correlation across beats at identical locations. To increase the compression ratio, the residual sequence obtained after linear prediction of the significant wavelet coefficients is transmitted to the decoder. The difference between the actual period and the mean beat period, and that between the actual scale factor and the average amplitude scale factor are also transmitted for each beat. At the decoder, the inverse wavelet transform is computed from the reconstructed wavelet transform coefficients. The original amplitude and period of each beat are then recovered. The approximation achieved, at an average rate of 180 b/s, is of high quality. We have evaluated the normalized maximum amplitude error and its position in each cycle, in addition to the normalized root mean square error. The significant feature of the proposed technique is that, while the error is nearly uniform throughout the cycle, the diagnostically crucial QRS region is kept free of maximal reconstruction error.
Over the past decade, many researchers have come up with different implementations of systems for decoding covert or imagined speech from EEG (electroencephalogram). They differ from each other in several aspects, from data acquisition to machine learning algorithms, due to which, a comparison between different implementations is often difficult. This review article puts together all the relevant works published in the last decade on decoding imagined speech from EEG into a single framework. Every important aspect of designing such a system, such as selection of words to be imagined, number of electrodes to be recorded, temporal and spatial filtering, feature extraction and classifier are reviewed. This helps a researcher to compare the relative merits and demerits of the different approaches and choose the one that is most optimal. Speech being the most natural form of communication which human beings acquire even without formal education, imagined speech is an ideal choice of prompt for evoking brain activity patterns for a BCI (brain-computer interface) system, although the research on developing real-time (online) speech imagery based BCI systems is still in its infancy. Covert speech based BCI can help people with disabilities to improve their quality of life. It can also be used for covert communication in environments that do not support vocal communication. This paper also discusses some future directions, which will aid the deployment of speech imagery based BCI for practical applications, rather than only for laboratory experiments.
This pilot study was carried out to find the feasibility of analyzing the maturity of the fetal lung using ultrasound images. Data were collected from normal pregnant women at intervals of two weeks from the gestation age of 24 to 38 weeks. Images were acquired at two centers located at different geographical locations. The total data acquired consisted of 750 images of immature and 250 images of mature class. A region of interest of 64 x 64 pixels was used for extracting the features. Various textural features were computed from the fetal lung and liver images. The ratios of fetal lung to liver feature values were investigated as possible indexes for classifying the images into those from mature (reduced pulmonary risk) and immature (possible pulmonary risk) lung. The features used are fractal dimension, lacunarity, and features derived from the histogram of the images. The following classifiers were used to classify the fetal lung images as belonging to mature or immature lung: nearest neighbor, k-nearest neighbor, modified k-nearest neighbor, multilayer perceptron, radial basis function network, and support vector machines. The classification accuracy obtained for the testing set ranges from 73% to 96%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.