The formation of aligned fibrous apatite crystals in enamel is predominantly attributed to the involvement of amelogenin proteins. We developed a model to study interactions of matrix proteins with apatite mineral in vitro and tested the hypothesis that amelogenin solubility affects the ability to induce protein-guided mineralization. Crystal growth experiments were performed on fluoroapatite (FAP) glass-ceramics in mineralizing solutions containing recombinant full-length amelogenin (rH174) at different concentrations. Using atomic force microscopy, we observed that mineral precipitated randomly on the substrate, but also formed thin layers (height, 10 nm) on FAP within 24 hrs. This growth pattern was unaffected when 0.4 mg/mL of rH174 was added. In contrast, crystals grew on FAP at a rate up to 20 times higher, at 1.6 mg/mL protein. Furthermore, nanospheres and mineral bound specifically to FAP and aligned in strings approximately parallel to the c-axis of FAP, leading us to the conclusion that amelogenin proteins indeed control direction and rate of growth of apatite in enamel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.