Context. The interpretation of asteroid spectra provides the basis for determining the chemical composition and physical process that modified the surface of the asteroids. The increasing number of asteroid spectral measurements has lead to well-developed methods for analyzing asteroid spectra. There is however no centralized database for all the published data and a set of standard routines is also required. Aims. We present a public software tool that combines both data archives and analyses of asteroid spectra. Methods. Our project M4AST (Modeling for asteroids) consists of an asteroid spectral database and a set of applications for analyzing asteroid spectra. These applications cover aspects related to taxonomy, curve matching with laboratory spectra, space weathering models, and mineralogical diagnosis. Results. M4AST project is fully available via a web interface. The database contains around 2700 spectra that can be either processed in M4AST and/or downloaded. The paper presents the algorithms we developed for spectral analyses based on existing methods. The robustness of routines is proven by the solutions found for spectra of three different asteroids: (9147) Kourakuen, (99 942) Apophis, and (175 706) 1996 FG3. The available results confirm those in the literature. M4AST applications can also be used to characterize any new asteroid spectra. Conclusions. M4AST is a robust and reliable tool dedicated to asteroid spectra.
Context. The Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE) provide information about the surface composition of about 100 000 minor planets. The resulting visible colors and albedos enabled us to group them in several major classes, which are a simplified view of the diversity shown by the few existing spectra. A large set of data in the 0.8−2.5 µm, where wide spectral features are expected, is required to refine and complement the global picture of these small bodies of the solar system. Aims. We aim to obtain the near-infrared colors for a large sample of solar system objects using the observations made during the VISTA-VHS survey. Methods. We performed a serendipitous search in VISTA-VHS observations using a pipeline developed to retrieve and process the data that corresponds to solar system objects (SSo). The resulting photometric data is analyzed using color−color plots and by comparison with the known spectral properties of asteroids. Results. The colors and the magnitudes of the minor planets observed by the VISTA survey are compiled into three catalogs that are available online: the detections catalog (MOVIS-D), the magnitudes catalog (MOVIS-M), and the colors catalog (MOVIS-C). They were built using the third data release of the survey (VISTA VHS-DR3). A total of 39 947 objects were detected, including 52 NEAs, 325 Mars Crossers, 515 Hungaria asteroids, 38 428 main-belt asteroids, 146 Cybele asteroids, 147 Hilda asteroids, 270 Trojans, 13 comets, 12 Kuiper Belt objects and Neptune with its four satellites. The colors found for asteroids with known spectral properties reveal well-defined patterns corresponding to different mineralogies. The distributions of MOVIS-C data in color−color plots shows clusters identified with different taxonomic types. All the diagrams that use (Y − J) color separate the spectral classes more effectively than the (J − H) and (H − Ks) plots used until now: even for large color errors (<0.1), the plots (Y − J) vs. (Y − Ks) and (Y − J) vs. (J − Ks) provide the separation between S-complex and C-complex. The end members A, D, R, and V-types occupy well-defined regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.