The clay mineralogy of the Late Pliocene-Early Pleistocene Pinjor Formation of the type area, northwestern Himalaya, India has been investigated to understand the paleoclimatic conditions and paleotectonic regime prevailing in the frontal Himalayan terrain during 2.5 Ma to 1.7 Ma. The clay minerals were investigated by X-ray diffraction analysis and scanning electron microscope studies. Study of the oriented aggregates of 47 representative clay samples of the Pinjor Formation of the type area reveals that illite is the most dominant mineral followed by chlorite, kaolinite, vermiculite and mixed layer clay minerals. The distribution of the clay minerals in the three lithostratigraphic units of the Formation, namely the Kona Clay Member, the Tanda Bhagwanpur Wacke Member and the Chauki Nadah Pebbly Bed Member which are well exposed along the Berwala-Mandhna section, the Kona-Karaundanwala section and the Ghaggar River-Chauki Nadah section, is nearly uniform suggesting thereby the prevalence of similar sedimentation environments in the Himalayan foreland basin. The presence of illite and kaolinite suggests their derivation from crystalline rocks containing felspar and mica as also from pre-existing soils and sedimentary rocks. Further, the paleoclimatic conditions were moderate. Presence of chlorite suggests the weathering of intermediate and basic crystalline rocks and low grade metamorphic rocks in the positive areas. The presence of kaolinite in the Pinjor Formation is mainly attributed to the weathering and subsequent leaching of the mineral from granitic and basic rocks in the hinterland. Vermiculite has been mainly formed by weathering and transformation of biotite. Warm and humid climatic conditions prevailed for a major part during the deposition of the detritus which favored weathering and transformation of minerals. During the terminal phase of sedimentation there was renewed tectonic activity which had a significant impact on climate as precipitation and mechanical weathering rates increased substantially. Post 1.7 Ma there was a marked shift in temperature patterns and subsequent cooling of the landmass, which resulted in a decreased vegetation cover and a subsequent decrease in animal population thriving on it.
The Himalayan foothill region is traversed by the Main Boundary Thrust, the Himalayan Frontal Thrust and the Piedmont Fault which make the entire densely populated foothill region vulnerable to seismic damages. Tectonic morphometric studies of selected active tectonic indices in conjunction with analysis of multispectral satellite imagery of the foothill terrain from North of Chandigarh to West of Dehradun have revealed the presence of two major active faults. The Jainti Devi Fault, in the vicinity of Chandigarh, has offset nearly all the drainage channels by about 780 m while the Trilokpur Fault, in the vicinity of Nahan, has offset the streams and rivulets by about 1500 m. The values of ratio of valley floor width to valley height, the stream length gradient index, stream sinuosity index and mountain front sinuosity index have been computed and these reaffirm the active tectonic setup of the foothill terrain. The digital terrain model and field investigations reveal the presence of offset streams, sag ponds, linear valleys, shutter ridges and pressure ridges along the fault trace. Trenching carried out in the region has revealed the presence of numerous seismites.
Size analysis of the Late Pliocene-Early Pleistocene Upper Siwalik sediments comprising the Pinjor Formation in the type area and adjoining regions reveals that the sediments are bimodal to polymodal in nature, medium to fine grained and are moderately sorted. The inclusive graphic standard deviation and moment standard deviation values suggest the deposition of sediments in shallow to moderately deep fluvial agitated water. The log probability plots reveal that saltation mode is the dominant mode of transportation of detritus. The sediments are continental in character and are derived from crystalline, metamorphic and sedimentary rocks of the Himalaya exposed to the North of the type area Pinjor.
The Saraswati River used to flow from the glaciated peaks of the Himalaya to the Arabian sea, covering a distance of about 1800 km. It possibly sustained the Harappan civilization in the Indian subcontinent. This river has been studied as a part of the Ghaggar-Satluj-Hakra-Nara channel system in India and Pakistan. This study investigated its independent existence and evolution in the Himalayan foothill terrain and the proximal alluvial plains. Use of satellite imagery, shuttle radar topography mission data, accelerator mass spectrometry 14 C dating and optically stimulated luminescence chronology is being made to identify the possible palaeo-path of this ancient river and to characterize the trench sediment log architecture of the Saraswati River palaeochannels in northern India (Haryana). Our investigations reveal that this river formed a dense web of interconnecting channels which are continuously networked for more than 2,984 km in Haryana and their individual floodplain width varies from 1.5 to 13 km. The Harappan settlements in Haryana and Rajasthan nucleated and prospered in the fertile channel bars and interfluves of this river system. Majority of these habitation sites were located within a radius of less than 500 m from these palaeo-water channel networks. Enormous amount of water was flowing through this channel network until BC 11,147. Sediment characteristics and their chronology reveal that flow of water in the river channel decreased with time as the glacial cover diminished. The varying thickness of clay beds in sediment logs is indicative of the fluctuations in water flow possibly as a consequence of terrain slope modifications and consequent gradual channel avulsion, climate change, and global drought events. The flow of water continued through the Himalayan foothill input channels of the palaeo-Saraswati River in Haryana until AD 1402.
Active tectonic morphometric studies of the sparsely investigated frontal Siwalik terrain around Goran in the Samba district bordering the Kathua district of J&K reveal the presence of NW-SE trending active sinistral strike-slip fault with oblique slip component which is parallel to the Surin-Masatgarh anticline. The Basantar River, the Tarnah stream, the Ujh River, the Sahaar stream and the Ravi River exhibit significant stream offsets where the fault crosses these channels. The values of the morphometric indices viz. stream sinuosity index (S), stream length gradient index (SL), valley floor width to valley height ratio (V f), mountain front sinuosity index (S mf), hypsometric integral (Hi), basin asymmetry ratio (AF) and basin elongation ratio (Eb) calculated along the linear river offsets with respect to longitudinal River segments of the Rivers Basantar, Tarnah, Ujh, Sahaar and Ravi Rivers reveal that terrain is tectonically active and can be placed in tectonic active class I. The fault has an apparent offset of about 2000 m with it as it crosses the Basantar, the Tarnah, the Ujh, the Sahaar and the Ravi Rivers. The stream offsets upon field and laboratory investigations are developed due to an active sinistral strike slip fault which is being named as Goran fault. This fault has a surface expression of 100 km extending from the Basantar in the northwest up to the Beas River in the southwest whereas the remaining segment may exist as a hidden fault all along the Himalaya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.