This paper addresses a three-machine assembly-type flowshop scheduling problem, which frequently arises from manufacturing process management as well as from supply chain management. Machines one and two are arranged in parallel for producing component parts individually, and machine three is an assembly line arranged as the second-stage of a flowshop for processing the component parts in batches. Whenever a batch is formed on the second-stage machine, a constant setup time is required. The objective is to minimize the makespan. In this study we establish the strong NP-hardness of the problem for the case where all the jobs have the same processing time on the second-stage machine. We then explore a useful property, based upon which a special case can be optimally solved in polynomial time. We also study several heuristic algorithms to generate quality approximate solutions for the general problem. Computational experiments are conducted to evaluate the effectiveness of the algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.