3D hierarchical heterostructure NiFe LDH@NiCoP/NF electrodes are prepared successfully on nickel foam with special interface engineering and synergistic effects. This research finds that the as-prepared NiFe LDH@NiCoP/NF electrodes have a more sophisticated inner structure and intensive interface than a simple physical mixture. The NiFe LDH@NiCoP/NF electrodes require an overpotential as low as 120 and 220 mV to deliver 10 mA cm −2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH, respectively. Tafel and electrochemical impedance spectroscopy further reveal a favorable kinetic during electrolysis. Specifically, the NiFe LDH@NiCoP/NF electrodes are simultaneously used as cathode and anode for overall water splitting, which requires a cell voltage of 1.57 V at 10 mA cm −2 . Furthermore, the synergistic effect of the heterostructure improves the structural stability and promotes the generation of active phases during HER and OER, resulting in excellent stability over 100 h of continuous operation. Moreover, the strategy and interface engineering of the introduced heterostructure can also be used to prepare other bifunctional and cost-efficient electrocatalysts for various applications.
Reducing green hydrogen production costs is essential for developing a hydrogen economy. Developing cost-effective electrocatalysts for water electrolysis is thus of great research interest. Among various material candidates, transition metal phosphides (TMP) have emerged as robust bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) due to their various phases and tunable electronic structure. Recently, heterostructured catalysts have exhibited significantly enhanced activities toward HER/OER. The enhancement can be attributed to the increased amount of accessible active sites, accelerated mass/charge transfer, and optimized adsorption of intermediates, which arise from the synergistic effects of the heterostructure. Herein, a comprehensive overview of the recent progress of bifunctional TMP-based heterostructure is introduced to provide an insight into their preparation and corresponding reaction mechanisms. It starts with summarizing general fundamental aspects of HER/OER and the synergistic effect of heterostructures for enhanced catalytic activity. Next, the innovational strategies to design and construct bifunctional TMP-based heterostructures with enhanced overall water splitting activity, as well as the related mechanisms, are discussed in detail. Finally, a summary and perspective for further opportunities and challenges are highlighted for the further development of bifunctional TMP-based heterostructures from the points of practical application and mechanistic studies.
Long triplet lifetimes of excited photosensitizers are essential for efficient energy transfer reactions in water, given that the concentrations of dissolved oxygen and suitable acceptors in aqueous media are typically...
The control over the size and shape of nanoMOFs is essential for their exploitation in integrated devices such as sensors, membranes for gas separation, photoelectrodes, etc. Here, we demonstrate the synthesis of nanowires and three-dimensionally interconnected nanowire networks of Cu-based metal−organic frameworks (MOFs) by a combination of ion-track technology and electrochemical methods. In particular, Cu nanowires and nanowire networks were electrodeposited inside polymeric etched ion-track membranes and subsequently converted by electrochemical oxidation into different Cu-based MOFs such as the wellknown Cu 3 (BTC) 2 (also known as HKUST-1) and the lesserknown MOF Cu(INA) 2 . The MOFs are formed inside the template, therefore adopting the shape of the host nanochannels. The synthesized MOF nanowires exhibit tunable diameters between 80 and 260 nm. Characterization by X-ray diffraction, thermogravimetric analysis/differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy indicates that the employed electrochemical conversion includes the formation of Cu 2 O as an intermediate, as well as the initial formation of an amorphous MOF phase, which crystallizes upon longer reaction times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.