A series of tripodal receptors preorganize electron-deficient aromatic rings to bind halides in organic solvents using weak sigma anion-to-arene interactions or C-H...X- hydrogen bonds. 1H NMR spectroscopy proves to be a powerful technique for quantifying binding in solution and determining the interaction motifs, even in cases of weak binding.
ConspectusAromatic fluorides are prevalent in both agrochemical and pharmaceutical agents. However, methods for their rapid and general preparation from widely available starting materials are limited. Traditional approaches such as the Balz–Schiemann and Halex reactions require harsh conditions that limit functional group tolerance and substrate scope. The use of transition metals to affect C–F bond formation has provided some useful alternatives, but a broadly applicable method remains elusive. In contrast to the widespread use of Pd0/PdII catalysis for aryl–Z bond formation (Z = C, N, O), the analogous C–F cross-coupling process was unknown until fairly recently. In large part, this is due to the challenging Ar–F reductive elimination from Pd(II) intermediates. We have discovered that certain biaryl monophosphine ligands are uniquely capable of promoting this transformation. In this Account, we describe the discovery and development of a Pd-catalyzed C–F cross-coupling process and the systematic developments that made this once hypothetical reaction possible.Key to these developments was the discovery of an unusual in situ ligand modification process in which a molecule of substrate is incorporated into the ligand scaffold and the identity of the modifying group is crucial to the outcome of the reaction. This prompted the synthesis of a variety of “premodified” ligands and the identification of one that led to an expanded substrate scope, including (hetero)aryl triflates and bromides. Contemporaneously, a new Pd(0) precatalyst was also discovered that avoids the need to reduce Pd(II) in situ, a process that was often inefficient and led to the formation of byproducts.The use of inexpensive but hygroscopic sources of fluoride necessitates a reaction setup inside of a N2-filled glovebox, limiting the practicality of the method. Thus, a preformed wax capsule was designed to isolate the catalyst and reagents from the atmosphere and permit benchtop storage and setup. This new technology thus removes the requirement to employ a glovebox for the aromatic fluorination process and other air-sensitive protocols.In every catalyst system that we have studied to date, we observed the formation of regioisomeric fluoride side products. Through deuterium labeling studies it was found that they likely arise from a deprotonation event resulting in the formation of HF and a Pd–benzyne intermediate. Through an investigation of the mechanism of this undesired pathway, a new ligand was designed that substantially reduces the formation of the aryl fluoride regioisomer and even allows room-temperature Ar–F reductive elimination from a Pd(II) intermediate.
A tripodal receptor capable of extracting uranyl ion from aqueous solutions has been developed. At a uranyl concentration of 400 ppm, the developed ligand extracts ∼59% of the uranyl ion into the organic phase. The new receptor features three carboxylates that converge on the uranyl ion through bidentate interactions. Solution studies reveal slow exchange of the carboxylates on the NMR time scale. The crystal structure of the complex shows that the carboxylates coordinate to uranyl ion while the amides hydrogen bond to one of the uranyl oxo-oxygen atoms. The hydrophobic coating of the ligand and its rigidity contribute to its ability to selectively extract uranyl ion from dilute aqueous solutions.
Catalytic guest stars: A cavitand with an azobenzene wall adopts an introverted shape when irradiated with UV light. This conformation has been characterized in solution and the solid state and is used to control guest binding. By incorporating an organocatalyst guest, the rate of the Knoevenagel condensation is controlled with light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.