This study investigated the effect of high flow conditions on aerosol penetration and the relationship between penetration at constant and cyclic flow conditions. National Institute for Occupational Safety and Health (NIOSH)-approved N95 and P100 filtering facepiece respirators and cartridges were challenged with inert solid and oil aerosols. A combination of monodisperse aerosol and size-specific aerosol measurement equipment allowed count-based penetration measurement of particles with nominal diameters ranging from 0.02 to 2.9 microm. Three constant flow conditions (85, 270, and 360 L/min) were selected to match the minute, inhalation mean, and inhalation peak flows of the four cyclic flow conditions (40, 85, 115, and 135 L/min) tested. As expected, penetration was found to increase under increased constant and cyclic flow conditions. The most penetrating particle size (MPPS) generally ranged from 0.05 to 0.2 microm for P100 filters and was approximately 0.05 microm for N95 filters. Although penetration increased at the high flow conditions, the MPPS was relatively unaffected by flow. Of the constant flows tested, the flows equivalent to cyclic inhalation mean and peak flows best approximated the penetration measurements of the corresponding cyclic flows.
The supply of N95 filtering facepiece respirators (FFRs) may not be adequate to match demand during a pandemic outbreak. One possible strategy to maintain supplies in healthcare settings is to extend FFR use for multiple patient encounters; however, contaminated FFRs may serve as a source for the airborne transmission of virus particles. In this study, reaerosolization of virus particles from contaminated FFRs was examined using bacteriophage MS2 as a surrogate for airborne pathogenic viruses. MS2 was applied to FFRs as droplets or droplet nuclei. A simulated cough (370 l min(-1) peak flow) provided reverse airflow through the contaminated FFR. The number and size of the reaerosolized particles were measured using gelatin filters and an Andersen Cascade Impactor (ACI). Two droplet nuclei challenges produced higher percentages of reaerosolized particles (0.21 and 0.08%) than a droplet challenge (<0.0001%). Overall, the ACI-determined size distribution of the reaerosolized particles was larger than the characterized loading virus aerosol. This study demonstrates that only a small percentage of viable MS2 viruses was reaerosolized from FFRs by reverse airflow under the conditions evaluated, suggesting that the risks of exposure due to reaerosolization associated with extended use can be considered negligible for most respiratory viruses. However, risk assessments should be updated as new viruses emerge and better workplace exposure data becomes available.
The growing threat of an influenza pandemic presents a unique challenge to healthcare workers, emergency responders, and the civilian population. The Occupational Safety and Health Administration (OSHA) recommends National Institute for Occupational Safety and Health (NIOSH)-approved respirators to provide protection against infectious airborne viruses in various workplace settings. The filtration efficiency of selected NIOSH-approved particulate N95 and P100 filtering facepiece respirators (FFRs) and filter cartridges was investigated against the viable MS2 virus, a non-pathogenic bacteriophage, aerosolized from a liquid suspension. Tests were performed under two cyclic flow conditions (minute volumes of 85 and 135 L/min) and two constant flow rates (85 and 270 L/min). The mean penetrations of viable MS2 through the N95 and P100 FFRs/cartridges were typically less than 2 and 0.03%, respectively, under all flow conditions. All N95 and P100 FFR and cartridge models assessed in this study, therefore, met or exceeded their respective efficiency ratings of 95 and 99.97% against the viable MS2 test aerosol, even under the very high flow conditions. These NIOSH-approved FFRs and particulate respirators equipped with these cartridges can be anticipated to achieve expected levels of protection (consistent with their assigned protection factor) against airborne viral agents, provided that they are properly selected, fitted, worn, and maintained.
Decontamination of N95 filtering facepiece respirators (FFRs) is a crisis capacity strategy allowed when there are known shortages of FFRs. The application of moist heat is one decontamination method that has shown promise and is the approach approved in the Steris Steam Emergency Use Authorization (EUA). This effort examines the use of multicookers to apply moist heat, as they are available in retail stores and more affordable than methods requiring more sophisticated equipment. Four of five multicooker models examined met the acceptance criteria for the test and one model was selected for inactivation testing. Tests were performed on four different FFR models with SARS‐CoV‐2 suspended in culture media, simulated saliva or simulated lung fluid. Moist heat treatment reduced recoverable titres of SARS‐CoV‐2 virus to levels below the limit of detection in all tests. Furthermore, these four FFR models showed no loss in collection efficiency, inhalation resistance or visual damage after up to 10 decontamination cycles. Two (2) FFR models showed a slight change in strap elasticity (<9%). These data show that moist heat treatment using a multicooker is a viable option for FFR decontamination in a crisis capacity strategy.
Although not well established, mask leakage measured using submicron aerosol challenges is generally accepted as being representative of vapor challenges. The purpose of this study was to compare simulated respirator fit factors (FFs) measured using vapor challenges to those measured using an aerosol challenge. A full-facepiece respirator was mounted on a headform inside a small enclosure and modified with controlled leaks (laser-drilled orifices) to produce FFs ranging from about 300 to 30,000. A breathing machine was used to simulate breathing conditions of 1.0 L tidal volume and 25 breaths/min. A monodisperse aerosol consisting of 0.72 micron polystyrene latex spheres (PSL) was used for the reference test aerosol, and FFs were measured using a laser aerosol spectrometer. An inert gas, sulfur hexafluoride (SF6), and an organic vapor, isoamyl acetate (IAA), were used as the vapor challenges. The in-mask concentration of SF6 was measured using a gas chromatograph (GC). A GC was also used to quantify in-mask IAA concentration samples actively collected with sorbent tubes. FF measurements made with the PSL aerosol challenge were conducted in sequence with the SF6 and IAA challenges, without disturbing the mask, to yield matched data pairs for regression analysis. FFs measured using the PSL reference aerosol were found to correlate well with those measured with the SF6 (r2 = 0.99) and IAA (r2 = 0.98) vapor challenges. FFs measured using IAA tended to be higher at values below 10,000. The best agreement was observed with the inert gas, SF6. The results of this study suggest that submicron aerosols are suitable as quantitative fit test challenges for assessing the performance of respirators against inert vapors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.