This study aims to identify the critical parameters for implementing a sustainable artificial intelligence (AI) cloud system in the information technology industry (IT). To achieve this, an AHP-ISM-MICMAC integrated hybrid multi-criteria decision-making (MCDM) model was developed and implemented. The analytic hierarchy process (AHP) was used to determine the importance of each parameter, while interpretive structural modeling (ISM) was used to establish the interrelationships between the parameters. The cross-impact matrix multiplication applied to classification (MICMAC) analysis was employed to identify the driving and dependent parameters. A total of fifteen important parameters categorized into five major groups have been considered for this analysis from previously published works. The results showed that technological, budget, and environmental issues were the most critical parameters in implementing a sustainable AI cloud system. More specifically, the digitalization of innovative technologies is found to be the most crucial among the group from all aspects, having the highest priority degree and strong driving power. ISM reveals that all the factors are interconnected with each other and act as linkage barriers. This study provides valuable insights for IT industries looking to adopt sustainable AI cloud systems and emphasizes the need to consider environmental and economic factors in decision-making processes.
The COVID-19 virus is one of the most devastating illnesses humanity has ever faced. COVID-19 is an infection that is hard to diagnose until it has caused lung damage or blood clots. As a result, it is one of the most insidious diseases due to the lack of knowledge of its symptoms. Artificial intelligence (AI) technologies are being investigated for the early detection of COVID-19 using symptoms and chest X-ray images. Therefore, this work proposes stacking ensemble models using two types of COVID-19 datasets, symptoms and chest X-ray scans, to identify COVID-19. The first proposed model is a stacking ensemble model that is merged from the outputs of pre-trained models in the stacking: multi-layer perceptron (MLP), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU). Stacking trains and evaluates the meta-learner as a support vector machine (SVM) to predict the final decision. Two datasets of COVID-19 symptoms are used to compare the first proposed model with MLP, RNN, LSTM, and GRU models. The second proposed model is a stacking ensemble model that is merged from the outputs of pre-trained DL models in the stacking: VGG16, InceptionV3, Resnet50, and DenseNet121; it uses stacking to train and evaluate the meta-learner (SVM) to identify the final prediction. Two datasets of COVID-19 chest X-ray images are used to compare the second proposed model with other DL models. The result has shown that the proposed models achieve the highest performance compared to other models for each dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.