With the ever-increasing concern in network security and privacy, a major portion of Internet traffic is encrypted now. Recent research shows that more than 70% of Internet content is transmitted using HyperText Transfer Protocol Secure (HTTPS). However, HTTPS encryption eliminates the advantages of many intermediate services like the caching proxy, which can significantly degrade the performance of web content delivery. We argue that these restrictions lead to the need for other mechanisms to access sites quickly and safely. In this paper, we introduce QoS3, which is a protocol that can overcome such limitations by allowing clients to explicitly and securely re-introduce in-network caching proxies using fine-grained trust delegation without compromising the integrity of the HTTPS content and modifying the format of Transport Layer Security (TLS). In QoS3, we classify web page contents into two types: (1) public contents that are common for all users, which can be stored in the caching proxies, and (2) private contents that are specific for each user. Correspondingly, QoS3 establishes two separate TLS connections between the client and the web server for them. Specifically, for private contents, QoS3 just leverages the original HTTPS protocol to deliver them, without involving any middlebox. For public contents, QoS3 allows clients to delegate trust to specific caching proxy along the path, thereby allowing the clients to use the cached contents in the caching proxy via a delegated HTTPS connection. Meanwhile, to prevent Man-in-the-Middle (MitM) attacks on public contents, QoS3 validates the public contents by employing Document object Model (DoM) object-level checksums, which are delivered through the original HTTPS connection. We implement a prototype of QoS3 and evaluate its performance in our testbed. Experimental results show that QoS3 provides acceleration on page load time ranging between 30% and 64% over traditional HTTPS with negligible overhead. Moreover, QoS3 is deployable since it requires just minor software modifications to the server, client, and the middlebox.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.