Tree plantations and forest restoration are leading strategies for enhancing terrestrial carbon (C) sequestration and mitigating climate change. While it is well established that species-rich natural forests offer superior C sequestering benefits relative to short-rotation commercial monoculture plantations, differences in rates of C capture and storage between longer-lived plantations (commercial or non-commercial) and natural forests remain unclear. Using a natural experiment in the Western Ghats of India, where late-20th century conservation laws prohibited timber extraction from monodominant plantations and natural forests within nature reserves, we assessed forests and plantations for aboveground C storage and the magnitude and temporal stability of rates of photosynthetic C capture (gross primary production). Specifically, we tested the hypothesis that species-rich forests show greater temporal stability of C capture, and are more resistant to drought, than monodominant plantations. Carbon stocks in monodominant teak (Tectona grandis) and Eucalyptus (Eucalyptus spp.) plantations were 30%-50% lower than in natural evergreen forests, but differed little from moist-deciduous forests. Plantations had 4%-9% higher average C capture rates (estimated using the Enhanced Vegetation Index-EVI) than natural forests during wet seasons, but up to 29% lower C capture during dry seasons across the 2000-18 period. In both seasons, the rate of C capture by plantations was less stable across years, and decreased more during drought years (i.e. lower resistance to drought), compared to forests. Thus, even as certain monodominant plantations could match natural forests for C capture and storage potential, plantations are unlikely to match the stability-and hence reliability-of C capture exhibited by forests, particularly in the face of increasing droughts and other climatic perturbations. Promoting natural forest regeneration and/or multispecies native tree plantations instead of plantation monocultures could therefore benefit climate change mitigation efforts, while offering valuable co-benefits for biodiversity conservation and other ecosystem services.
In the tropics, where more than 75% of plants rely on vertebrates for seed dispersal (Howe & Smallwood, 1982), frugivores play an important role in maintaining plant community structure and diversity (Terborgh, Pitman, Silman, Schichter, & Núñez, 2002). Forest fragmentation and habitat loss are major factors affecting plant-frugivore interactions (McConkey et al., 2012; Newbold et al., 2013). By altering the plant community composition and reducing fruiting resources, forest fragmentation alters frugivore communities, which may lead to altered recruitment patterns of dependent trees
Endozoochory, a mutualistic interaction between plants and frugivores, is one of the key processes responsible for maintenance of tropical biodiversity. Islands, which have a smaller subset of plants and frugivores when compared with mainland communities, offer an interesting setting to understand the organization of plant–frugivore communities vis‐a‐vis the mainland sites. We examined the relative influence of functional traits and phylogenetic relationships on the plant–seed disperser interactions on an island and a mainland site. The island site allowed us to investigate the organization of the plant–seed disperser community in the natural absence of key frugivore groups (bulbuls and barbets) of Asian tropics. The endemic Narcondam Hornbill was the most abundant frugivore on the island and played a central role in the community. Species strength of frugivores (a measure of relevance of frugivores for plants) was positively associated with their abundance. Among plants, figs had the highest species strength and played a central role in the community. Island‐mainland comparison revealed that the island plant–seed disperser community was more asymmetric, connected, and nested as compared to the mainland community. Neither phylogenetic relationships nor functional traits (after controlling for phylogenetic relationships) were able to explain the patterns of interactions between plants and frugivores on the island or the mainland pointing toward the diffused nature of plant–frugivore interactions. The diffused nature is a likely consequence of plasticity in foraging behavior and trait convergence that contribute to governing the interactions between plants and frugivores. This is one of the few studies to compare the plant–seed disperser communities between a tropical island and mainland and demonstrates key role played by a point‐endemic frugivore in seed dispersal on island.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.