Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995–2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.
No abstract
Vanadium‐Redox‐Flow‐Batterien stellen eine Technologie dar, die zur Speicherung fluktuierender Energien aus Solar‐ und Windkraft eingesetzt werden kann. Um die Herstellungskosten der Batterien zur verringern, können zum Beispiel kostengünstigere Ausgangsmaterialien verwendet werden. Mithilfe von Polystyrol‐basierten Polymeren bei der Membranherstellung können Leitfähigkeiten erreiche werden, die vergleichbar mit denen von Perfluorsulfonsäuremembranen sind. Es wird eine Herstellungsmethode für diese heterogenen Membranen bestehend aus disperser und kontinuierlicher Phase präsentiert.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Gewebeverstärkte Protonenaustauschermembranen (gPEM) werden durch die Verarbeitung einer Polymersuspension bestehend aus gelöstem Polyethersulfon (PES) und dispersem Polystyrol (vernetzt, sulfonyliert und sulfoniert) mit Polymergeweben hergestellt und charakterisiert. Unter Verwendung eines Gewebes aus Polyetheretherketon (PEEK) mit einer Dicke von 128 mm weisen die hergestellten gPEM gegenüber Selemion CMVN und Nafion N115 eine höhere Protonenleitfähigkeit bei 25°C auf. Die Energieeffizienz der bei 100 mA cm -2 getesteten Vanadium-Redox-Flow-Zelle liegt mit Nafion N115 bei 68,6 %, mit CMVN bei 53,1 % und mit gPEM bei 69,4 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.