Clostridium difficile is a leading cause of antibiotic-associated diarrhea, a significant animal pathogen, and a worldwide public health burden. Most disease-causing strains secrete two exotoxins, TcdA and TcdB, which are considered to be the primary virulence factors. Understanding the role that these toxins play in disease is essential for the rational design of urgently needed new therapeutics. However, their relative contributions to disease remain contentious. Using three different animal models, we show that TcdA+ TcdB− mutants are attenuated in virulence in comparison to the wild-type (TcdA+ TcdB+) strain, whereas TcdA− TcdB+ mutants are fully virulent. We also show for the first time that TcdB alone is associated with both severe localized intestinal damage and systemic organ damage, suggesting that this toxin might be responsible for the onset of multiple organ dysfunction syndrome (MODS), a poorly characterized but often fatal complication of C. difficile infection (CDI). Finally, we show that TcdB is the primary factor responsible for inducing the in vivo host innate immune and inflammatory responses. Surprisingly, the animal infection model used was found to profoundly influence disease outcomes, a finding which has important ramifications for the validation of new therapeutics and future disease pathogenesis studies. Overall, our results show unequivocally that TcdB is the major virulence factor of C. difficile and provide new insights into the host response to C. difficile during infection. The results also highlight the critical nature of using appropriate and, when possible, multiple animal infection models when studying bacterial virulence mechanisms.
The clinical cure rate of patients infected with the epidemic BI C. difficile strain is lower than the cure rate of those infected with non-BI strains whether treated with fidaxomicin or vancomycin. Similarly, the CDI recurrence rate is increased in patients with the BI strain compared with patients with other C. difficile strains.
bNontoxigenic Clostridium difficile (NTCD) has been shown to prevent fatal C. difficile infection in the hamster model when hamsters are challenged with standard toxigenic C. difficile strains. The purpose of this study was to determine if NTCD can prevent C. difficile infection in the hamster model when hamsters are challenged with restriction endonuclease analysis group BI C. difficile strains. Groups of 10 hamsters were given oral clindamycin, followed on day 2 by 10 6 CFU of spores of NTCD strain M3 or T7, and were challenged on day 5 with 100 CFU of spores of BI1 or BI6. To conserve animals, results for control hamsters challenged with BI1 or BI6 from the present study and controls from previous identical experiments were combined for statistical comparisons. NTCD strains M3 and T7 achieved 100% colonization and were 100% protective against challenge with BI1 (P < 0.001). M3 colonized 9/10 hamsters and protected against BI6 challenge in the colonized hamsters (P ؍ 0.0003). T7 colonized 10/10 hamsters, but following BI6 challenge, cocolonization occurred in 5 hamsters, 4 of which died, for protection of 6/10 animals (P ؍ 0.02). NTCD colonization provides protection against challenge with toxigenic BI group strains. M3 is more effective than T7 in preventing C. difficile infection caused by the BI6 epidemic strain. Prevention of C. difficile infection caused by the epidemic BI6 strain may be more challenging than that of infections caused by historic BI1 and non-BI C. difficile strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.