We have identified a clonal complex of Mycobacterium bovis present at high frequency in cattle in population samples from several sub-Saharan west-central African countries. This closely related group of bacteria is defined by a specific chromosomal deletion (RDAf1) and can be identified by the absence of spacer 30 in the standard spoligotype typing scheme. We have named this group of strains the African 1 (Af1) clonal complex and have defined the spoligotype signature of this clonal complex as being the same as the M. bovis BCG vaccine strain but with the deletion of spacer 30. Strains of the Af1 clonal complex were found at high frequency in population samples of M. bovis from cattle in Mali, Cameroon, Nigeria, and Chad, and using a combination of variable-number tandem repeat typing and spoligotyping, we show that the population of M. bovis in each of these countries is distinct, suggesting that the recent mixing of strains between countries is not common in this area of Africa. Strains with the Af1-specific deletion (RDAf1) were not identified in M. bovis isolates from Algeria, Burundi, Ethiopia, Madagascar, Mozambique, South Africa, Tanzania, and Uganda. Furthermore, the spoligotype signature of the Af1 clonal complex has not been identified in population samples of bovine tuberculosis from Europe, Iran, and South America. These observations suggest that the Af1 clonal complex is geographically localized, albeit to several African countries, and we suggest that the dominance of the clonal complex in this region is the result of an original introduction into cows naïve to bovine tuberculosis.
We have identified a clonal complex of Mycobacterium bovis isolated at high frequency from cattle in Uganda, Burundi, Tanzania, and Ethiopia. We have named this related group of M. bovis strains the African 2 (Af2) clonal complex of M. bovis. Af2 strains are defined by a specific chromosomal deletion (RDAf2) and can be identified by the absence of spacers 3 to 7 in their spoligotype patterns. Deletion analysis of M. bovis isolates from Algeria, Mali, Chad, Nigeria, Cameroon, South Africa, and Mozambique did not identify any strains of the Af2 clonal complex, suggesting that this clonal complex of M. bovis is localized in East Africa. The specific spoligotype pattern of the Af2 clonal complex was rarely identified among isolates from outside Africa, and the few isolates that were found and tested were intact at the RDAf2 locus. We conclude that the Af2 clonal complex is localized to cattle in East Africa. We found that strains of the Af2 clonal complex of M. bovis have, in general, four or more copies of the insertion sequence IS6110, in contrast to the majority of M. bovis strains isolated from cattle, which are thought to carry only one or a few copies.
We have identified a globally important clonal complex of M. bovis by deletion analysis of over one thousand strains from over 30 countries. We initially show that over 99% of the strains of Mycobacterium bovis, the cause of bovine tuberculosis, isolated from cattle in the Republic of Ireland and the UK are closely related and are members of a single clonal complex marked by the deletion of chromosomal region RDEu,1 and we named this clonal complex European 1 (Eu1). Eu1 strains were present at less than
BackgroundMozambique is one of the countries with the highest burden of tuberculosis (TB) in Sub-Saharan Africa, and information on the predominant genotypes of Mycobacterium tuberculosis circulating in the country are important to better understand the epidemic. This study determined the predominant strain lineages that cause TB in Mozambique.ResultsA total of 445 M. tuberculosis isolates from seven different provinces of Mozambique were characterized by spoligotyping and resulting profiles were compared with the international spoligotyping database SITVIT2.The four most predominant lineages observed were: the Latin-American Mediterranean (LAM, n = 165 or 37%); the East African-Indian (EAI, n = 132 or 29.7%); an evolutionary recent but yet ill-defined T clade, (n = 52 or 11.6%); and the globally-emerging Beijing clone, (n = 31 or 7%). A high spoligotype diversity was found for the EAI, LAM and T lineages.ConclusionsThe TB epidemic in Mozambique is caused by a wide diversity of spoligotypes with predominance of LAM, EAI, T and Beijing lineages.
BackgroundBovine tuberculosis (bTB), caused by Mycobacterium bovis, is an infectious disease of cattle that also affects other domestic animals, free-ranging and farmed wildlife, and also humans. In Mozambique, scattered surveys have reported a wide variation of bTB prevalence rates in cattle from different regions. Due to direct economic repercussions on livestock and indirect consequences for human health and wildlife, knowing the prevalence rates of the disease is essential to define an effective control strategy.Methodology/Principal findingsA cross-sectional study was conducted in Govuro district to determine bTB prevalence in cattle and identify associated risk factors. A representative sample of the cattle population was defined, stratified by livestock areas (n = 14). A total of 1136 cattle from 289 farmers were tested using the single comparative intradermal tuberculin test. The overall apparent prevalence was estimated at 39.6% (95% CI 36.8–42.5) using a diagnostic threshold cut-off according to the World Organization for Animal Health. bTB reactors were found in 13 livestock areas, with prevalence rates ranging from 8.1 to 65.8%. Age was the main risk factor; animals older than 4 years were more likely to be positive reactors (OR = 3.2, 95% CI: 2.2–4.7). Landim local breed showed a lower prevalence than crossbred animals (Landim × Brahman) (OR = 0.6, 95% CI: 0.4–0.8).Conclusions/SignificanceThe findings reveal an urgent need for intervention with effective, area-based, control measures in order to reduce bTB prevalence and prevent its spread to the human population. In addition to the high prevalence, population habits in Govuro, particularly the consumption of raw milk, clearly may potentiate the transmission to humans. Thus, further studies on human tuberculosis and the molecular characterization of the predominant strain lineages that cause bTB in cattle and humans are urgently required to evaluate the impact on human health in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.