Electricity production from photovoltaic (PV) systems has accelerated in the last few decades. Numerous environmental factors, particularly the buildup of dust on PV panels have resulted in a significant loss in PV energy output. To detect the dust and thus reduce power loss, several techniques are being researched, including thermal imaging, image processing, sensors, cameras with IoT, machine learning, and deep learning. In this study, a new dataset of images of dusty and clean panels is introduced and applied to the current state-of-the-art (SOTA) classification algorithms. Afterward, a new convolutional neural network (CNN) architecture, SolNet, is proposed that deals specifically with the detection of solar panel dust accumulation. The performance and results of the proposed SolNet and other SOTA algorithms are compared to validate its efficiency and outcomes where SolNet shows a higher accuracy level of 98.2%. Hence, both the dataset and SolNet can be used as benchmarks for future research endeavors. Furthermore, the classes of the dataset can also be expanded for multiclass classification. At the same time, the SolNet model can be fine-tuned by tweaking the hyperparameters for further improvements.
Plagiarism is an act of literature fraud, which is presenting others’ work or ideas without giving credit to the original work. All published and unpublished written documents are under the cover of this definition. Plagiarism, which increased significantly over the last few years, is a concerning issue for students, academicians, and professionals. Due to this, there are several plagiarism detection tools or software available to detect plagiarism in different languages. Unfortunately, negligible work has been done and no plagiarism detection software available in the Bengali language where Bengali is one of the most spoken languages in the world. In this paper, we have proposed a plagiarism detection tool for the Bengali language that mainly focuses on the educational and newspaper domain. We have collected 82 textbooks from the National Curriculum of Textbooks (NCTB), Bangladesh, scrapped all articles from 12 reputed newspapers and compiled our corpus with more than 10 million sentences. The proposed method on Bengali text corpus shows an accuracy rate of 97.31%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.