The effect of thermal radiation on the three-dimensional magnetized rotating flow of a hybrid nanofluid has been numerically investigated. Enhancing heat transmission is a contemporary engineering challenge in a range of sectors, including heat exchangers, electronics, chemical and biological reactors, and medical detectors. The main goal of the current study is to investigate the effect of magnetic parameter, solid volume fraction of copper, Eckert number, and radiation parameter on velocity and temperature distributions, and the consequence of solid volume fraction on declined skin friction and heat transfer against suction and a stretching/shrinking surface. A hybrid nanofluid is a contemporary type of nanofluid that is used to increase heat transfer performance. A linear similarity variable is–applied to convert the governing partial differential equations (PDEs) into corresponding ordinary differential equations (ODEs). Using the three-stage Labatto III-A method included in the MATLAB software’s bvp4c solver, the ODE system is solved numerically. In certain ranges of involved parameters, two solutions are received. The temperature profile upsurges in both solutions with growing values of and . Moreover, the conclusion is that solution duality exists when the suction parameter , while no flow of fluid is possible when . Finally, stability analysis has been performed and it has been found that only the first solution is the stable one between both solutions.
Hybrid nanofluid is considered a modern and improvised form of nanofluid which usually used to enhance the performance of heat transfer in fluid flow systems. Previous studies found hybrid nanofluid offered a wide range of applications and this opened up numerous new opportunities to further explore the unknown behaviour of hybrid nanofluid under different body geometries and physical parameters. This paper numerically studied a two-dimensional mixed convection and radiative Al2O3-Cu/H2O hybrid nanofluid flow over a vertical exponentially shrinking sheet with partial slip conditions. The main objective is to investigate the effect of mixed convection and radiation on the velocity and temperature profiles, as well as the effect of suction on reduced skin friction and reduced heat transfer with respect to solid volume fraction of copper, velocity, and thermal slips. Exponential similarity variables transformed the governing system of partial differential equations into a system of ordinary differential equations which is solved via MATLAB’s bvp4c solver. Outcomes showed that the value of the reduced heat transfer upsurges in the first solution but declines in the second solution when the velocity slip rises. The reduced heat transfer decreases in both dual solutions when thermal slip is enhanced. As the intensity of thermal slip increases, the reduced skin friction rises in the first solution and decreases in the second. As the mixed convection parameter increases, no obvious variation is noticed in the temperature distribution within the first solution, but increasing trend is observed within the second solution. An increment in the temperature distribution also observed within the dual solutions as the thermal radiation parameter increases. In summary, findings from this study are particularly useful to understand various behaviour of Al2O3-Cu/H2O hybrid nanofluid under the influence of mixed convection, radiation, and partial slip conditions when it flows over a vertical exponential shrinking sheet.
Hybrid nanofluid has an extensive range of real-world applications. Hybrid nanofluid is a new and advanced nanofluid modification extensively used to increase thermal efficiency in fluid flow systems. The main objective of this research is to study magnetohydrodynamics hybrid nanofluid flow numerically in two dimensional over a vertical exponentially shrinking sheet, considering the effects of Joule heating and thermal slip condition. Furthermore, using the Tiwari-Das model, the influence of the suction parameter on variations of reduced skin friction and reduced heat transfer is also explored. The hybrid nanofluid in this research is an Al2O3+Cu/water hybrid nanofluid, in which water is the base fluid, and two types of solid nanoparticles, namely Alumina (Al2O3) and copper (Cu), are combined together. The governing partial differential (PDEs) equations are transformed into the ordinary differential equations (ODEs) using exponential similarity variables. The resulting ordinary differential equations (ODEs) are numerically solved using the three-stage Labatto III-A technique in the "MATLAB software's" bvp4c solver. Hybrid nanofluids have greater thermal efficiency than nanofluids and base fluid. Dual solutions are obtained in specified ranges of suitable parameters. The temperature profile rises in both solutions as the Eckert value enhances. Besides, In the first and second solutions, the thermal boundary layer thickness decreased gradually as the thermal slip parameter increased. Finally, the conclusions presented that solution duality exists when the suction parameter , while no flow of fluid is possible when .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.