In contrast to the single sensory surface present in teleost fishes, several spatially segregated subsystems with distinct molecular and functional characteristics define the mammalian olfactory system. However, the evolutionary steps of that transition remain unknown. Here we analyzed the olfactory system of an early diverging tetrapod, the amphibian Xenopus laevis, and report for the first time the existence of two odor-processing streams, sharply segregated in the main olfactory bulb and partially segregated in the olfactory epithelium of pre-metamorphic larvae. A lateral odor-processing stream is formed by microvillous receptor neurons and is characterized by amino acid responses and Gαo/Gαi as probable signal transducers, whereas a medial stream formed by ciliated receptor neurons is characterized by responses to alcohols, aldehydes, and ketones, and Gαolf/cAMP as probable signal transducers. To reveal candidates for the olfactory receptors underlying these two streams, the spatial distribution of 12 genes from four olfactory receptor gene families was determined. Several class II and some class I odorant receptors (ORs) mimic the spatial distribution observed for the medial stream, whereas a trace amine-associated receptor closely parallels the spatial pattern of the lateral odor-processing stream. Other olfactory receptors (some class I odorant receptors and vomeronasal type 1 receptors) and odor responses (to bile acids, amines) were not lateralized, the latter not even in the olfactory bulb, suggesting an incomplete segregation. Thus, the olfactory system of X. laevis exhibits an intermediate stage of segregation and as such appears well suited to investigate the molecular driving forces behind olfactory regionalization.
Mammalian olfactory receptor families are segregated into different olfactory organs, with type 2 vomeronasal receptor (v2r) genes expressed in a basal layer of the vomeronasal epithelium. In contrast, teleost fish v2r genes are intermingled with all other olfactory receptor genes in a single sensory surface. We report here that, strikingly different from both lineages, the v2r gene family of the amphibian Xenopus laevis is expressed in the main olfactory as well as the vomeronasal epithelium. Interestingly, late diverging v2r genes are expressed exclusively in the vomeronasal epithelium, whereas "ancestral" v2r genes, including the single member of v2r family C, are restricted to the main olfactory epithelium. Moreover, within the main olfactory epithelium, v2r genes are expressed in a basal zone, partially overlapping, but clearly distinct from an apical zone of olfactory marker protein and odorant receptor-expressing cells. These zones are also apparent in the spatial distribution of odor responses, enabling a tentative assignment of odor responses to olfactory receptor gene families. Responses to alcohols, aldehydes, and ketones show an apical localization, consistent with being mediated by odorant receptors, whereas amino acid responses overlap extensively with the basal v2r-expressing zone. The unique bimodal v2r expression pattern in main and accessory olfactory system of amphibians presents an excellent opportunity to study the transition of v2r gene expression during evolution of higher vertebrates. To what extent such differences influence the coding and discrimination abilities of the respective olfactory systems is unclear, and the evolutionary path toward such segregation is unknown.
Studies of the two major olfactory organs of rodents, the olfactory mucosa (OM) and the vomeronasal organ (VNO), unraveled the molecular basis of smell in vertebrates. However, some vertebrates lack a VNO. Here we generated and analyzed the olfactory transcriptome of the zebrafish and compared it to the olfactory transcriptomes of mouse to investigate the evolutionary and molecular relationship between single and dual olfactory systems. Our analyses revealed a high degree of molecular conservation, with orthologs of mouse olfactory cell-specific markers and all but one of their chemosensory receptor classes expressed in the single zebrafish olfactory organ. Zebrafish chemosensory receptor genes are expressed across a large dynamic range and their RNA abundance correlates positively with the number of neurons expressing that RNA. Thus we estimate the relative proportions of neuronal sub-types expressing different chemosensory receptors. Receptor repertoire size drives the absolute abundance of different classes of neurons, but we find similar underlying patterns in both species. Finally, we identified novel marker genes that characterize rare neuronal populations in both mouse and zebrafish. In sum, we find that the molecular and cellular mechanisms underpinning olfaction in teleosts and mammals are similar despite 430 million years of evolutionary divergence.
Throughout the animal kingdom chemical senses are one of the primary means by which organisms make sense of their environment. To achieve perception of complex chemosensory stimuli large repertoires of olfactory and gustatory receptors are employed in bony vertebrates, which are characterized by high evolutionary dynamics in receptor repertoire size and composition. However, little is known about their evolution in earlier diverging vertebrates such as cartilaginous fish, which include sharks, skates, rays, and chimeras. Recently, the olfactory repertoire of a chimera, elephant shark, was found to be curiously reduced in odorant receptor number. Elephant sharks rely heavily on electroreception to localize prey; thus, it is unclear how representative their chemosensory receptor repertoire sizes would be for cartilaginous fishes in general. Here, we have mined the genome of a true shark, Scyliorhinus canicula (catshark) for olfactory and gustatory receptors, and have performed a thorough phylogenetic study to shed light on the evolution of chemosensory receptors in cartilaginous fish. We report the presence of several gustatory receptors of the TAS1R family in catshark and elephant shark, whereas TAS2R receptors are absent. The catshark olfactory repertoire is dominated by V2R receptors, with 5–8 receptors in the other three families (OR, ORA, TAAR). Species-specific expansions are mostly limited to the V2R family. Overall, the catshark chemosensory receptor repertoires are generally similar in size to those of elephant shark, if somewhat larger, showing similar evolutionary tendencies across over 400 Myr of separate evolution between catshark and elephant shark.
All olfactory receptors identified in teleost fish are expressed in a single sensory surface, whereas mammalian olfactory receptor gene families segregate into different olfactory organs, chief among them the main olfactory epithelium expressing ORs and TAARs, and the vomeronasal organ expressing V1Rs and V2Rs. A transitional stage is embodied by amphibians, with their vomeronasal organ expressing more 'modern', later diverging V2Rs, whereas more 'ancient', earlier diverging V2Rs are expressed in the main olfactory epithelium.During metamorphosis the main olfactory epithelium of Xenopus tadpoles transforms into an air-filled cavity (principal cavity, air nose), whereas a newly formed cavity (middle cavity) takes over the function of a water nose. We report here that larval expression of ancient V2Rs is gradually lost from the main olfactory epithelium as it transforms into the air nose.Concomitantly, ancient v2r gene expression begins to appear in the basal layers of the newly forming water nose. We observe the same transition for responses to amino acid odorants, consistent with the hypothesis that amino acid responses may be carried by V2R receptors.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.