Types 1 and 2 diabetes affect some 380 million people worldwide. Both result ultimately from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with peak beta cell labeling indices achieving approximately 2% in first year of life1-4. In embryonic life and after early childhood, beta cell replication rates are very low. While beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts1-8. Hence, there remains an urgent need for diabetes therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, we report the results of a high-throughput small molecule screen (HTS) revealing a novel class of human beta cell mitogenic compounds, analogues of the small molecule, harmine. We also define dual specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine, and the Nuclear Factors of activated T-cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation as well as beta cell differentiation. These observations suggest that harmine analogues (“harmalogs”) may have unique therapeutic promise for human diabetes therapy. Enhancing potency and beta cell specificity are important future challenges.
Developing new techniques to induce -cells to replicate is a major goal in diabetes research. Endogenous -cells replicate in response to metabolic changes, such as obesity and pregnancy, which increase insulin requirement. Mouse genetic models promise to reveal the pathways responsible for compensatory -cell replication. However, no simple, short-term, physiological replication stimulus exists to test mouse models for compensatory replication. Here, we present a new tool to induce -cell replication in living mice. Four-day glucose infusion is well tolerated by mice as measured by hemodynamics, body weight, organ weight, food intake, and corticosterone level. Mild sustained hyperglycemia and hyperinsulinemia induce a robust and significant fivefold increase in -cell replication. Glucoseinduced -cell replication is dose and time dependent. -Cell mass, islet number, -cell size, and -cell death are not altered by glucose infusion over this time frame. Glucose infusion increases both the total protein abundance and nuclear localization of cyclin D2 in islets, which has not been previously reported. Thus, we have developed a new model to study the regulation of compensatory -cell replication, and we describe important novel characteristics of mouse -cell responses to glucose in the living pancreas.
Rationale and Objectives: Although many clinical physiology and epidemiology studies show an association between obstructive sleep apnea (OSA) and markers of insulin resistance, no causal pathway has been established. The purpose of the current study was to determine if the intermittent hypoxia (IH) stimulus that characterizes OSA causes insulin resistance in the absence of obesity. Furthermore, we assessed the impact of IH on specific metabolic function in liver and muscle. Finally, we examined the potential mechanistic role of the autonomic nervous system (ANS) in mediating insulin resistance in response to IH. Methods and Results: Hyperinsulinemic euglycemic clamps were conducted and whole-body insulin sensitivity, hepatic glucose output, and muscle-specific glucose utilization assessed in conscious, chronically instrumented adult male C57BL/6J mice exposed to (1 ) IH (achieving a nadir of FI O 2 ϭ 5-6% at 60 cycles/h for 9 h), (2 ) intermittent air as a control, (3 ) IH with ANS blockade (hexamethonium), or (4 ) IA with ANS blockade. IH decreased whole-body insulin sensitivity compared with intermittent air (38.8 Ϯ 2.7 vs. 49.4 Ϯ 1.5 mg/ kg/min, p Ͻ 0.005) and reduced glucose utilization in oxidative muscle fibers, but did not cause a change in hepatic glucose output. Furthermore, the reduction in whole-body insulin sensitivity during IH was not restored by ANS blockade. Conclusion: We conclude that IH can cause acute insulin resistance in otherwise lean, healthy animals, and that the response is associated with decreased glucose utilization of oxidative muscle fibers, but that it occurs independently of activation of the ANS.
Hepatocyte growth factor (HGF) is produced in pancreatic mesenchyme-derived cells and in islet cells. In vitro, HGF increases the insulin content and proliferation of islets. To study the role of HGF in the islet in vivo, we have developed three lines of transgenic mice overexpressing mHGF using the rat insulin II promoter (RIP). Each RIP-HGF transgenic line displays clear expression of HGF mRNA and protein in the islet. RIPmHGF mice are relatively hypoglycemic in post-prandial and fasting states compared with their normal littermates. They display inappropriate insulin production, striking overexpression of insulin mRNA in the islet, and a 2-fold increase in the insulin content in islet extracts. Importantly, beta cell replication rates in vivo are two to three times higher in RIP-HGF mice. This increase in proliferation results in a 2-3-fold increase in islet mass. Moreover, the islet number per pancreatic area was also increased by approximately 50%. Finally, RIP-mHGF mice show a dramatically attenuated response to the diabetogenic effects of streptozotocin. We conclude that the overexpression of HGF in the islet increases beta cell proliferation, islet number, beta cell mass, and total insulin production in vivo. These combined effects result in mild hypoglycemia and resistance to the diabetogenic effects of streptozotocin. Hepatocyte growth factor (HGF)1 is a mesenchyme-derived protein originally identified as a circulating factor implicated in liver regeneration after hepatic injury or hepatectomy (1-3). It is now recognized that HGF also exhibits its mitogenic, motogenic, and morphogenic activities in a wide variety of cells (4, 5). The active form of HGF is a disulfide-linked heterodimeric protein, which is composed of a 69-kDa ␣-chain and a 34-kDa -chain, containing four kringle domains and a serine protease-like domain, respectively. Active HGF derives from an inactive single chain precursor that is processed and activated by proteolysis. Four proteases have been reported to date to activate HGF in vitro, including blood coagulation factor XIIa, urokinase, tissue-type plasminogen activator, and a serumderived serine protease named HGF activator (6 -9). HGF is primarily a paracrine factor produced by mesenchymal cells that acts on epithelial cells through a membrane-spanning tyrosine kinase receptor, the protein product of the proto-oncogene, c-met (5, 10, 11). The receptor, like the ligand, has a widespread distribution.Messenger RNAs encoding HGF and the HGF receptor, cmet, are highly expressed during the early development of the pancreas, and then maintained at a low level during puberty and adult life (12)(13)(14). HGF has been detected immunohistochemically in the exocrine portion of rabbit pancreas, and in rat and human pancreatic islet cells (15-17). Tissue-type plasminogen activator has been detected in the rat endocrine pancreas, preferentially in somatostatin cells (18). In addition, confocal immunofluorescent studies have preferentially colocalized the c-Met receptor protein to insulin-conta...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.