Ethanolamine ammonia-lyase (EAL) is a 5’-deoxyadenosylcobalamin (AdoCbl; coenzyme B12) –dependent bacterial enzyme that catalyzes the deamination of the short-chain vicinal amino alcohols, aminoethanol and [S]- and [R]-2-aminopropanol. The coding sequence for EAL is located within the 17-gene eut operon, which codes for the broad spectrum of proteins that comprise the eut metabolosome sub-organelle structure. A high-resolution structure of the ~500 kDa EAL [(EutB-EutC)2]3 oligomer from Escherichia coli has been determined by X-ray crystallography, but high-resolution spectroscopic determinations of reactant intermediate state structures, and detailed kinetic and thermodynamic studies of EAL, have been conducted for the Salmonella typhimurium enzyme. Therefore, a statistically robust homology model for the S. typhimurium EAL is constructed from the E. coli structure. The model structure is used to describe the hierarchy of EutB and EutC subunit interactions that construct the native EAL oligomer, and specifically, to address the long-standing challenge of reconstitution of the functional oligomer from isolated, purified subunits. Model prediction that the (EutB2)3 oligomer assembly will occur from isolated EutB, and that this hexameric structure will template the formation of the complete, native [(EutB-EutC)2]3 oligomer, is verified by biochemical methods. Prediction that cysteine residues on the exposed subunit-subunit contact surfaces of isolated EutB and EutC will interfere with assembly by cystine formation is verified by activating effects of disulfide reducing agents. Ångstrom-scale congruence of the reconstituted and native EAL in the active site region is shown by electron paramagnetic resonance spectroscopy. Overall, the hierarchy of subunit interactions and microscopic features of the contact surfaces, that are revealed by the homology model, guide and provide a rationale for a refined genetic and biochemical approach to reconstitution of the functional [(EutB-EutC)2]3 EAL oligomer. The results establish a platform for further advances toward understanding the molecular mechanism of EAL catalysis, and for insights into therapy-targeted manipulation of the bacterial ethanolamine utilization (eut) metabolosome.
Components of a protein-integrated, earth-abundant metal-macrocycle catalyst, purposed for hydrogen (H2) production from aqueous protons under green conditions, are characterized. The cobalt (Co) -corrin complex, cobinamide, is demonstrated to produce H2 (4.4±1.8×10−3 turnover number per hour) in a homogeneous, photosensitizer/sacrificial electron donor system, in pure water at neutral pH. Turnover is proposed to be limited by the relatively low population of the gateway Co(III) hydride species. A heterolytic mechanism for H2 production from the Co(II) hydride is proposed. Two essential requirements for assembly of a functional protein catalyst complex are demonstrated, for interaction of cobinamide with the (βα)8, TIM-barrel protein, EutB, from the adenosylcobalamin-dependent ethanolamine ammonia-lyase from Salmonella typhimurium: (1) High affinity equilibrium binding of the cobinamide (dissociation constant, 2.1×10−7 M), and (2) in situ photoreduction of the cobinamide-protein complex to the Co(I) state. Molecular modeling of the cobinamide-EutB interaction shows that these features arise from specific hydrogen bond and apolar interactions of the protein with the alkylamide substituents and ring of the corrin, and accessibility of the binding site to solution. The results establish cobinamide-EutB as a platform for design and engineering of a robust H2 production metallo-catalyst, that operates under green conditions, and utilizes advantages of protein as a tunable medium and material support.
The B (adenosylcobalamin)-dependent ethanolamine ammonia-lyase (EAL) is a product of the ethanolamine utilisation (eut) gene cluster, that is involved in human gut microbiome homeostasis and in disease conditions caused by pathogenic strains of Salmonella and Escherichia coli. Toward elucidation of the molecular basis of EAL catalysis, and its intracellular trafficking and targeting to the Eut biomicrocompartment (BMC), we have applied electron spin-labelling and electron paramagnetic resonance spectroscopy to wild-type (wt) EAL from Salmonella typhimurium, by using the sulphydryl-specific, 4-maleimido-TEMPO (4MT) spin label. One cysteine residue per active site displays exceptional reactivity with 4MT. This site is identified as βC37 on the EutC subunit, by using 4MT-labeling of site-specific cysteine-to-alanine mutants, enzyme kinetics, and accessible surface area calculations. Electron paramagnetic resonance (EPR) spectra of 4MT-labelled wt EAL are collected over 200-265 K in frozen, polycrystalline water-only, and 1% v/v DMSO solvents. EPR simulations reveal two mobility components for each condition. Detectable spin probe reorientational motion of the two components occurs at 215 and 225 K with 1% v/v DMSO, relative to the water-only condition, consistent with formation of an aqueous-DMSO solvent mesodomain around EAL. Parallel trends in fast- and slow-reorientational correlation times and interconversion of the two populations with increasing temperature, indicate 4MT labelling of a single site (βC37). A two-state model is proposed, in which the fast and slow motional populations represent EAL-bound and free conformations of the EutC N-terminal domain. The approximately equal proportion of each state may represent a balance between EutC and EAL protein stability and efficient targeting to the BMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.