Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs. Competitiveness issues, against standard starch based ethanol, are evident considering many commercial scale cellulosic ethanol plants appear to be currently in idle or on-hold states.
Several methods are currently used to track the bio-component of co-processed fuels including energy/mass balance, yield methods and radiocarbon techniques. The methods used to track or estimate the bio-component of fuels produced when bio and fossil feedstocks are processed together (co-processed) in oil refineries were analysed in detail, together with their advantages and disadvantages. Some methods, such as radiocarbon methods that allow the direct measurement of the bio-content in a fuel, have been criticised due to low accuracy at low blends. However, these reservations have tended to misinterpret the options available for carbon dating and to discount recent improvements in these tests. As much higher co-pressing mixtures are anticipated if published national decarbonisation targets are to be achieved, any challenges at very low co-processing ratios affecting the accuracy of the radiocarbon methods should not be an issue. Energy/mass balance and yield methods might be supplemented with carbon-tracking to determine the real the biogenic content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.