BackgroundThe maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases.ResultsWe present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+.ConclusionsCUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.
The prevalence of tandem repeats in eukaryotic genomes and their association with a number of genetic diseases has raised considerable interest in locating these repeats. Over the last 10-15 years, numerous tools have been developed for searching tandem repeats, but differences in the search algorithms adopted and difficulties with parameter settings have confounded many users resulting in widely varying results. In this review, we have systematically separated the algorithmic aspect of the search tools from the influence of the parameter settings. We hope that this will give a better understanding of how the tools differ in algorithmic performance, their inherent constraints and how one should approach in evaluating and selecting them.
Background: The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation ® 3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm.
BackgroundCurrent-generation sequencing technologies are able to produce low-cost, high-throughput reads. However, the produced reads are imperfect and may contain various sequencing errors. Although many error correction methods have been developed in recent years, none explicitly targets homopolymer-length errors in the 454 sequencing reads.ResultsWe present HECTOR, a parallel multistage homopolymer spectrum based error corrector for 454 sequencing data. In this algorithm, for the first time we have investigated a novel homopolymer spectrum based approach to handle homopolymer insertions or deletions, which are the dominant sequencing errors in 454 pyrosequencing reads. We have evaluated the performance of HECTOR, in terms of correction quality, runtime and parallel scalability, using both simulated and real pyrosequencing datasets. This performance has been further compared to that of Coral, a state-of-the-art error corrector which is based on multiple sequence alignment and Acacia, a recently published error corrector for amplicon pyrosequences. Our evaluations reveal that HECTOR demonstrates comparable correction quality to Coral, but runs 3.7× faster on average. In addition, HECTOR performs well even when the coverage of the dataset is low.ConclusionOur homopolymer spectrum based approach is theoretically capable of processing arbitrary-length homopolymer-length errors, with a linear time complexity. HECTOR employs a multi-threaded design based on a master-slave computing model. Our experimental results show that HECTOR is a practical 454 pyrosequencing read error corrector which is competitive in terms of both correction quality and speed. The source code and all simulated data are available at: http://hector454.sourceforge.net.
Abstract. Multiple sequence alignment is an important tool in bioinformatics. Although efficient heuristic algorithms exist for this problem, the exponential growth of biological data demands an even higher throughput. The recent emergence of accelerator technologies has made it possible to achieve a highly improved execution time for many bioinformatics applications compared to general-purpose platforms. In this paper, we demonstrate how the PlayStation®3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the distance matrix computation utilized in multiple sequence alignment algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.