Understanding the principles that govern community assemblages is a central goal of ecology. There is limited experimental evidence in natural settings showing that microbial assembly in communities are influenced by antagonistic interactions. We, therefore, analyzed antagonism among bacterial isolates from a taxonomically related bacterial guild obtained from five sites in sediments from a fresh water system. We hypothesized that if antagonistic interactions acted as a shaping force of the community assembly, then the frequency of resistance to antagonism among bacterial isolates originating from a given site would be higher than the resistance to conspecifics originating from a different assemblage. Antagonism assays were conducted between 78 thermoresistant isolates, of which 72 were Bacillus spp. Sensitive, resistant and antagonistic isolates co-occurred at each site, but the within-site frequency of resistance observed was higher than that observed when assessed across-sites. We found that antagonism results from bacteriocinlike substances aimed at the exclusion of conspecifics. More than 6000 interactions were scored and described by a directed network with hierarchical structure that exhibited properties that resembled a food chain, where the different Bacillus taxonomic groups occupied specific positions. For some tested interacting pairs, the unidirectional interaction could be explained by competition that inhibited growth or completely excluded one of the pair members. This is the first report on the prevalence and specificity of Bacillus interactions in a natural setting and provides evidence for the influence of bacterial antagonist interactions in the assemblage of a taxonomically related guild in local communities.
Phosphorus (P) plays a fundamental role in the physiology and biochemistry of all living things. Recent evidence indicates that organisms in the oceans can break down and use P forms in different oxidation states (e.g., ؉5, ؉3, ؉1, and ؊3); however, information is lacking for organisms from soil and sediment. The Cuatro Ciénegas Basin (CCB), Mexico, is an oligotrophic ecosystem with acute P limitation, providing a great opportunity to assess the various strategies that bacteria from soil and sediment use to obtain P. We measured the activities in sediment and soil of different exoenzymes involved in P recycling and evaluated 1,163 bacterial isolates (mainly Bacillus spp.) for their ability to use six different P substrates. DNA turned out to be a preferred substrate, comparable to a more bioavailable P source, potassium phosphate. Phosphodiesterase activity, required for DNA degradation, was observed consistently in the sampled-soil and sediment communities. A capability to use phosphite (PO 3 3؊ ) and calcium phosphate was observed mainly in sediment isolates. Phosphonates were used at a lower frequency by both soil and sediment isolates, and phosphonatase activity was detected only in soil communities. Our results revealed that soil and sediment bacteria are able to break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Different strategies for P utilization were distributed between and within the different taxonomic lineages analyzed, suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. IMPORTANCEPhosphorus (P) is an essential element for life found in molecules, such as DNA, cell walls, and in molecules for energy transfer, such as ATP. The Valley of Cuatro Ciénegas, Coahuila (Mexico), is a unique desert characterized by an extreme limitation of P and a great diversity of microbial life. How do bacteria in this valley manage to obtain P? We measured the availability of P and the enzymatic activity associated with P release in soil and sediment. Our results revealed that soil and sediment bacteria can break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Even genetically related bacterial isolates exhibited different preferences for molecules, such as DNA, calcium phosphate, phosphite, and phosphonates, as substrates to obtain P, evidencing a distribution of roles for P utilization and suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. P hosphorus (P) is an essential element for the synthesis of many biomolecules, including DNA, RNA, and ATP (1), with no substitute as a building block of life. P is also frequently limiting for a variety of biota, including vascular plants, marine and freshwater phytoplankton, aquatic and terrestrial bacteria, and herbivorous animals (2); thus, understanding how P limitation shapes ecological and evolutionary dynamics is a key step in linking levels of biological organization from genes to ecosystems.Or...
We assembled the complete genome sequences of Bacillus pumilus strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for proteins potentially involved in antagonism (bacteriocins) and defense mechanisms (abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains harbored prophage sequences. Our results provide insights into understanding the establishment of microbial interactions.
We sequenced the Bacillus horikoshii 20a genome, isolated from sediment collected in Cuatro Cienegas, Mexico. We identified genes involved in establishing antagonistic interactions in microbial communities (antibiotic resistance and bacteriocins) and genes related to the metabolism of cyanophycin, a reserve compound and spore matrix material potentially relevant for survival in an oligotrophic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.