The action of dopamine on the aggregation of the unstructured alpha-synuclein (α-syn) protein may be linked to the pathogenesis of Parkinson's disease. Dopamine and its oxidation derivatives may inhibit α-syn aggregation by non-covalent binding. Exploiting this fact, we applied an integrated computational and experimental approach to find alternative ligands that might modulate the fibrillization of α-syn. Ligands structurally and electrostatically similar to dopamine were screened from an established library. Five analogs were selected for in vitro experimentation from the similarity ranked list of analogs. Molecular dynamics simulations showed they were, like dopamine, binding non-covalently to α-syn and, although much weaker than dopamine, they shared some of its binding properties. In vitro fibrillization assays were performed on these five dopamine analogs. Consistent with our predictions, analyses by atomic force and transmission electron microscopy revealed that all of the selected ligands affected the aggregation process, albeit to a varying and lesser extent than dopamine, used as the control ligand. The in silico/in vitro approach presented here emerges as a possible strategy for identifying ligands interfering with such a complex process as the fibrillization of an unstructured protein.
This paper reports a series of ab initio, density functional theory (DFT), and semiempirical molecular orbital (MO) calculations concerning the reaction between the ultimate carcinogen of acrylamide and guanine. Acrylamide--a product of the Maillard reaction--is present in a variety of fried and oven-cooked food. After intake, it is epoxidized by cytochrome P450 2E1 to yield the ultimate carcinogen--glycidamide. Effects of solvation were considered using the Langevin dipoles (LD) model of Florian and Warshel and the solvent reaction field (SCRF) model of Tomasi and co-workers. In silico activation free energies are in very good agreement with the experimental value of 22.8 kcal/mol. This agreement presents strong evidence in favor of the validity of the proposed S N2 reaction mechanism and points to the applicability of quantum chemical methods to studies of reactions associated with carcinogenesis. In addition, insignificant stereoselectivity of the studied reaction was predicted. Finally, the competing reaction of glycidamide with adenine was simulated, and the experimentally observed regioselectivity was successfully reproduced.
Molecular docking of ligands targeting proteins undergoing fibrillization in neurodegenerative diseases is difficult because of the lack of deep binding sites. Here we extend standard docking methods with free energy simulations in explicit solvent to address this issue in the context of the prion protein surface. We focus on a specific ligand (2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide), which binds to the structured part of the protein as shown by NMR (Kuwata, K. et al. Proc Natl Acad Sci U.S.A. 2007, 104, 11921-11926). The calculated free energy of dissociation (7.8 ± 0.9 kcal/mol) is in good agreement with the value derived by the experimental dissociation constant (Kd = 3.9 μM, corresponding to ΔG(0) = -7.5 kcal/mol). Several binding poses are predicted, including the one reported previously. Our prediction is fully consistent with the presence of multiple binding sites, emerging from NMR measurements. Our molecular simulation-based approach emerges, therefore, as a useful tool to predict poses and affinities of ligand binding to protein surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.