BackgroundDue to high mortality and lack of efficient screening, new tools for ovarian cancer (OC) diagnosis are urgently needed. To broaden the knowledge on the pathological processes that occur during ovarian cancer tumorigenesis, protein-peptide profiling was proposed.MethodsSerum proteomic patterns in samples from OC patients were obtained using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF). Eighty nine serum samples (44 ovarian cancer and 45 healthy controls) were pretreated using solid-phase extraction method. Next, a classification model with the most discriminative factors was identified using chemometric algorithms. Finally, the results were verified by external validation on an independent test set of samples.ResultsMain outcome of this study was an identification of potential OC biomarkers by applying liquid chromatography coupled with tandem mass spectrometry. Application of this novel strategy enabled the identification of four potential OC serum biomarkers (complement C3, kininogen-1, inter-alpha-trypsin inhibitor heavy chain H4, and transthyretin). The role of these proteins was discussed in relation to OC pathomechanism.ConclusionsThe study results may contribute to the development of clinically useful multi-component diagnostic tools in OC. In addition, identifying a novel panel of discriminative proteins could provide a new insight into complex signaling and functional networks associated with this multifactorial disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-017-3467-2) contains supplementary material, which is available to authorized users.
Ovarian cancer has emerged as one of the leading cause of gynecological malignancies. So far, the measurement of CA125 and HE4 concentrations in blood and transvaginal ultrasound examination are essential ovarian cancer diagnostic methods. However, their sensitivity and specificity are still not sufficient to detect disease at the early stage. Moreover, applied treatment may appear to be ineffective due to drug-resistance. Because of a high mortality rate of ovarian cancer, there is a pressing need to develop innovative strategies leading to a full understanding of complicated molecular pathways related to cancerogenesis. Recent studies have shown the great potential of clinical proteomics in the characterization of many diseases, including ovarian cancer. Therefore, in this review, we summarized achievements of proteomics in ovarian cancer management. Since the development of mass spectrometry has caused a breakthrough in systems biology, we decided to focus on studies based on this technique. According to PubMed engine, in the years 2008–2010 the number of studies concerning OC proteomics was increasing, and since 2010 it has reached a plateau. Proteomics as a rapidly evolving branch of science may be essential in novel biomarkers discovery, therapy decisions, progression predication, monitoring of drug response or resistance. Despite the fact that proteomics has many to offer, we also discussed some limitations occur in ovarian cancer studies. Main difficulties concern both complexity and heterogeneity of ovarian cancer and drawbacks of the mass spectrometry strategies. This review summarizes challenges, capabilities, and promises of the mass spectrometry-based proteomics techniques in ovarian cancer management.
Despite many years of studies, ovarian cancer remains one of the top ten cancers worldwide. Its high mortality rate is mainly due to lack of sufficient diagnostic methods. For this reason, our research focused on the identification of blood markers whose appearance would precede the clinical manifestation of the disease. ITRAQ-tagging (isobaric Tags for Relative and Absolute Quantification) coupled with mass spectrometry technology was applied. Three groups of samples derived from patients with: ovarian cancer, benign ovarian tumor, and healthy controls, were examined. Mass spectrometry analysis allowed for highlighting the dysregulation of several proteins associated with ovarian cancer. Further validation of the obtained results indicated that five proteins (Serotransferrin, Amyloid A1, Hemopexin, C-reactive protein, Albumin) were differentially expressed in ovarian cancer group. Interestingly, the addition of Albumin, Serotransferrin, and Amyloid A1 to CA125 (cancer antigen 125) and HE4 (human epididymis protein4) improved the diagnostic performance of the model discriminating between benign and malignant tumors. Identified proteins shed light on the molecular signaling pathways that are associated with ovarian cancer development and should be further investigated in future studies. Our findings indicate five proteins with a strong potential to use in a multimarker test for screening and detection of ovarian cancer.
As cancer development involves pathological vessel formation, 16 angiogenesis markers were evaluated as potential ovarian cancer (OC) biomarkers. Blood samples collected from 172 patients were divided based on histopathological result: OC (n = 38), borderline ovarian tumours (n = 6), non-malignant ovarian tumours (n = 62), healthy controls (n = 50) and 16 patients were excluded. Sixteen angiogenesis markers were measured using BioPlex Pro Human Cancer Biomarker Panel 1 immunoassay. Additionally, concentrations of cancer antigen 125 (CA125) and human epididymis protein 4 (HE4) were measured in patients with adnexal masses using electrochemiluminescence immunoassay. In the comparison between OC vs. non-OC, osteopontin achieved the highest area under the curve (AUC) of 0.79 (sensitivity 69%, specificity 78%). Multimarker models based on four to six markers (basic fibroblast growth factor—FGF-basic, follistatin, hepatocyte growth factor—HGF, osteopontin, platelet-derived growth factor AB/BB—PDGF-AB/BB, leptin) demonstrated higher discriminatory ability (AUC 0.80–0.81) than a single marker (AUC 0.79). When comparing OC with benign ovarian tumours, six markers had statistically different expression (osteopontin, leptin, follistatin, PDGF-AB/BB, HGF, FGF-basic). Osteopontin was the best single angiogenesis marker (AUC 0.825, sensitivity 72%, specificity 82%). A three-marker panel consisting of osteopontin, CA125 and HE4 better discriminated the groups (AUC 0.958) than HE4 or CA125 alone (AUC 0.941 and 0.932, respectively). Osteopontin should be further investigated as a potential biomarker in OC screening and differential diagnosis of ovarian tumours. Adding osteopontin to a panel of already used biomarkers (CA125 and HE4) significantly improves differential diagnosis between malignant and benign ovarian tumours.
Due to high mortality rates of lung cancer, there is a need for identification of new, clinically useful markers, which improve detection of this tumor in early stage of disease. In the current study, serum peptide profiling was evaluated as a diagnostic tool for non-small cell lung cancer patients. The combination of the ZipTip technology with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the analysis of peptide pattern of cancer patients (n = 153) and control subjects (n = 63) was presented for the first time. Based on the observed significant differences between cancer patients and control subjects, the classification model was created, which allowed for accurate group discrimination. The model turned out to be robust enough to discriminate a new validation set of samples with satisfactory sensitivity and specificity. Two peptides from the diagnostic pattern for non-small cell lung cancer (NSCLC) were identified as fragments of C3 and fibrinogen α chain. Since ELISA test did not confirm significant differences in the expression of complement component C3, further study will involve a quantitative approach to prove clinical utility of the other proteins from the proposed multi-peptide cancer signature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.