The results of recent research indicate that the introduction of layered silicatemontmorillonite -into polymer matrix results in increase of thermal stability of a number of polymer nanocomposites. Due to characteristic structure of layers in polymer matrix and nanoscopic dimensions of filler particles, several effects have been observed that can explain the changes in thermal properties. The level of surface activity may be directly influenced by the mechanical interfacial adhesion or thermal stability of organic compound used to modify montmorillonite. Thus, increasing the thermal stability of montmorillonite and resultant nanocomposites is one of the key points in the successful technical application of polymer/clay nanocomposites on the industrial scale. Basing on most recent research, this work presents a detailed examination of factors influencing thermal stability, including the role of chemical constitution of organic modifier, composition and structure of nanocomposites, and mechanisms of improvement of thermal stability in polymer/montmorillonite nanocomposites.
In previous part of this work factors influencing the thermal stability of polymer nanocomposite materials were indicated, such as chemical constitution of organic modifier, filler content, nanocomposites' structure and the processing-dependent degree of homogenization of nanofiller, were presented. In this part the basic changes in thermal behaviour of different polymeric matrixes (e.g. polyolefins, polyamides, poly(vinyl chloride) and styrene-containing polymers) upon addition of montmorillonite have been described. Brief description of the kinetics of the decomposition process in inert and oxidative environment, as well as analysis of volatile and condensed products of degradation, have also been presented.
Three-phase composites (thermoplastic polymer, glass-fibres and nanoparticles) were investigated as an alternative to two-phase (polymer and glass-fibres) composites. The effect of matrix and reinforcement material on the energy absorption
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.