Background: AlkB dioxygenase removes alkyl and exocyclic lesions via an oxidative mechanism, restoring the native DNA bases. Results: AlkB repair efficiency is pH-and Fe(II) concentration-dependent, which correlates with the substrate pK a . Conclusion: AlkB recognizes and repairs protonated substrates. Significance: This study provides experimental evidence for the molecular mechanism of action of AlkB.
Previously we demonstrated the sequence-specific hydrolysis of the R1-(Ser/Thr)-peptide bond in Ni(II) complexes of peptides with a general R1-(Ser/Thr)-Xaa-His-Zaa-R2 sequence (R1 and R2 being any sequences) (Kopera, E.; Krezel, A.; Protas, A. M.; Belczyk, A.; Bonna, A.; Wyslouch-Cieszynska, A.; Poznanski, J.; Bal, W. Inorg. Chem. 2010, 49, 6636). In order to refine our understanding of the mechanism of this reaction and to find ways to accelerate it, we undertook a systematic study of effects of d-amino acid substitutions in the template Ac-Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Leu-NH2 peptide on the hydrolysis rate constants. We found that all stereochemical alterations made around the Ni(II) chelate plane resulted in the decrease of the reaction rate. However, the Ni(II) coordination, a prerequisite to the reaction, was not compromised by these substitutions. We demonstrated that the reaction is only possible when either the side chain of the crucial Ser (or Thr) residue is on the same part of the chelate plane as the next residue in the sequence (Arg), or the side chain of the residue following His (Trp) resides on the opposite side of the plane. The rate of reaction is the fastest when both these conditions are fulfilled. Another novel effect is the strong dependence of the rate of the acyl shift step on the character of the leaving group.
In our previous research we demonstrated the sequence specific peptide bond hydrolysis of the R1-(Ser/Thr)-Xaa-His-Zaa-R2 in the presence of Ni(II) ions. The molecular mechanism of this reaction includes an N-O acyl shift of the R1 group from the Ser/Thr amine to the side chain hydroxyl group of this amino acid. The proposed role of the Ni(II) ion is to establish favorable geometry of the reacting groups. In this work we aimed to find out whether the crucial step of this reaction--the formation of the intermediate ester--is reversible. For this purpose we synthesized the test peptide Ac-QAASSHEQA-am, isolated and purified its intermediate ester under acidic conditions, and reacted it, alone, or in the presence of Ni(II) or Cu(II) ions at pH 8.2. We found that in the absence of either metal ion the ester was quickly and quantitatively (irreversibly) rearranged to the original peptide. Such reaction was prevented by either metal ion. Using Cu(II) ions as CD spectroscopic probe we showed that the metal binding structures of the ester and the final amine are practically identical. Molecular calculations of Ni(II) complexes indicated the presence of steric strain in the substrate, distorting the complex structure from planarity, and the absence of steric strain in the reaction products. These results demonstrated the dual catalytic role of the Ni(II) ion in this mechanism. Ni(II) facilitates the acyl shift by setting the peptide geometry, and prevents the reversal of the acyl shift, by stabilizing subsequent reaction products.
In previous studies we showed that Ni(II) ions can hydrolytically cleave a peptide bond preceding Ser/Thr in peptides of a general sequence RN-(Ser/Thr)-Xaa-His-Zaa-RC, where RN and RC are any peptide sequences. A peptide library screening, assisted by accurate measurements of reaction kinetics for selected peptides, demonstrated the preference for bulky and aromatic residues at variable positions Xaa and Zaa [A. Krężel, E. Kopera, A.M. Protas, A. Wysłouch-Cieszyńska, J. Poznański, W. Bal, J. Am. Chem. Soc., 132 (2010) 3355-3366]. In this work we used a similar strategy to find out whether the next residue downstream to Zaa may influence the reaction rate. Using an Ac-Gly-Ala-Ser-Arg-His-Zaa-Baa-Arg-Leu-NH2 library, with Zaa and Baa positions containing all common amino acids except of Cys, we found a very strong preference for aromatic residues in both variable positions. This finding significantly limits the range of useful Xaa, Zaa and Baa substitutions, thus facilitating the search for optimal sequences for protein engineering applications [E. Kopera, A. Belczyk-Ciesielska, W. Bal, PLoS One 7 (2012) e36350].
Folding of a recombinant protein rECsigma(70) (4) comprising domain 4 of E. coli RNA polymerase sigma(70) subunit, upon addition of 2,2,2-trifluoroethanol (TFE) to its aqueous solution, was monitored by heteronuclear NMR spectroscopy. The TFE-induced migration of resonance signals in a series of (15)N-HSQC spectra displayed sequence-dependent heterogeneity. A common trend of uniform upfield shift in both (1)H and (15)N dimensions, indicative of generation of helical structures, breaks down for some residues almost cooperatively at 10-15% TFE (v/v), pointing to the buildup of non-helical regions separating the initially induced helices. The preferences of residues to assume either helical or non-helical conformation are correlated with the location in the sequence rather than with their type. CSI descriptors and (15)N relaxation data obtained for the protein at 10% TFE allowed characterization of the stability of the pre-folded state of rECsigma(70) (4). By all the criteria applied, three highly populated alpha-helical regions separated by much more flexible residues forming a loop and a turn in the DNA-binding HLHTH motif were identified. The location of the secondary structure elements along the protein sequence coincides with those found in homologous proteins, and with the helix nucleation regions determined in unfolded rECsigma(70) (4) at low pH. The bimodal distribution of the (15)N relaxation parameters enabled identification of residues forming a framework of the folded protein strictly corresponding to the HLHTH motif, bracketed by unfolded terminal regions. Thus, in respect to rECsigma(70) (4) in aqueous solution TFE acts not only as a strong helix inducer, but also as a folding agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.