This article presents an analysis of the convergence order of Taylor models and McCormick-Taylor models, namely Taylor models with McCormick relaxations as the remainder bounder, for factorable functions. Building upon the analysis of McCormick relaxations by Bompadre and Mitsos (J Glob Optim, 52(1):1-28, 2012), convergence bounds are established for the addition, multiplication and composition operations. It is proved that the convergence orders of both qth-order Taylor models and qth-order McCormick-Taylor models are at least q + 1, under relatively mild assumptions. Moreover, it is verified through simple numerical examples that these bounds are sharp. A consequence of this analysis is that, unlike McCormick relaxations over natural interval extensions, McCormick-Taylor models do not result in increased order of convergence over Taylor models in general. As demonstrated by the numerical case studies however, McCormick-Taylor models can provide tighter bounds or even result in a higher convergence rate.
We present lower bounds for the vehicle routing problem (VRP) with and without split deliveries, improving the well known bound of Haimovich and Rinnooy Kan. These bounds are then utilized in a design of best-to-date approximation algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.