SPEC CPU is one of the most common benchmark suites used in computer architecture research. CPU2017 has recently been released to replace CPU2006. In this paper we present a detailed evaluation of the memory hierarchy performance for both the CPU2006 and single-threaded CPU2017 benchmarks. The experiments were executed on an Intel Xeon Skylake-SP, which is the first Intel processor to implement a mostly non-inclusive last-level cache (LLC). We present a classification of the benchmarks according to their memory pressure and analyze the performance impact of different LLC sizes. We also test all the hardware prefetchers showing they improve performance in most of the benchmarks. After comprehensive experimentation, we can highlight the following conclusions: i) almost half of SPEC CPU benchmarks have very low miss ratios in the second and third level caches, even with small LLC sizes and without hardware prefetching, ii) overall, the SPEC CPU2017 benchmarks demand even less memory hierarchy resources than the SPEC CPU2006 ones, iii) hardware prefetching is very effective in reducing LLC misses for most benchmarks, even with the smallest LLC size, and iv) from the memory hierarchy standpoint the methodologies commonly used to select benchmarks or simulation points do not guarantee representative workloads.
Data prefetching is a technique that plays a crucial role in modern high-performance processors by hiding long latency memory accesses. Several state-of-the-art hardware prefetchers exploit the concept of deltas, defined as the difference between the cache line addresses of two demand accesses. Existing delta prefetchers, such as best offset prefetching (BOP) and multi-lookahead prefetching (MLOP), train and predict future accesses based on global deltas. We observed that the use of global deltas results in missed opportunities to anticipate memory accesses.In this paper, we propose Berti, a first-level data cache prefetcher that selects the best local deltas, i.e., those that consider only demand accesses issued by the same instruction. Thanks to a high-confidence mechanism that precisely detects the timely local deltas with high coverage, Berti generates accurate prefetch requests. Then, it orchestrates the prefetch requests to the memory hierarchy, using the selected deltas.Our empirical results using ChampSim and SPEC CPU2017 and GAP workloads show that, with a storage overhead of just 2.55 KB, Berti improves performance by 8.5% compared to a baseline IP-stride and 3.5% compared to IPCP, a state-of-theart prefetcher. Our evaluation also shows that Berti reduces dynamic energy at the memory hierarchy by 33.6% compared to IPCP, thanks to its high prefetch accuracy.
The management of shared resources in multicore processors is an open problem due to the continuous evolution of these systems. The trend toward increasing the number of cores and organizing them in clusters sets out new challenges not considered in previous works. In this paper, we characterize the use of the shared cache and memory bandwidth of an AMD Rome processor executing multiprogrammed workloads and propose several mechanisms that control the use of these resources to improve the system performance and fairness. Our control mechanisms require no hardware or operating system modifications. We evaluate Balancer on a real system running SPEC CPU2006 and CPU2017 applications. Balancer tuned for performance shows an average increase of 7.1% in system performance and an unfairness reduction of 18.6% with respect to a system without any control mechanism. Balancer tuned for fairness decreases the performance by 1.3% in exchange for a 64.5% reduction of unfairness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.