Background The neutrophil-lymphocyte ratio (NLR) is associated with a poor prognosis in many cancers but the biological mechanisms involved are unknown. Since cytokines and angiogenic factors (CAFs) are reflected by various immune responses, we analyzed the association between the NLR and CAFs and their prognostic implications in gastric cancer (GC). Methods Of 745 GC patients who were enrolled in NLR analysis, 70 underwent NLR and CAF association analyses. Pretreatment serum levels of 52 CAFs were measured by means of multiplex bead immunoassays and enzymelinked immunosorbent assays. Linear regression analysis and survival analysis of the NLR with each CAF were performed. Results Metastatic organ numbers and carbohydrate antigen 19-9 levels were significantly higher in patients with a high NLR [greater than 2.42 (median): P = 0.047 and P \ 0.001 respectively]. The overall survival was significantly worse in the high NLR group (17.8 months vs 11.2 months, P \ 0.001). In CAF analysis, osteopontin (R 2 = 0.337, P \ 0.001) and interleukin-6 (R 2 = 0.141, P = 0.001) were significantly associated with the NLR. Stromal-cell-derived factor 1 (SDF-1) was a significant poor prognostic factor independently of the NLR. Consideration of both the NLR and SDF-1 divided patient groups with different overall survival (both low, 21.0 months; either high, 15.8 months; both high, 8.2 months). Conclusion The NLR is a significant poor prognostic factor in advanced GC. The NLR is mainly associated with osteopontin and interleukin-6. Besides the NLR, SDF-1 is an independent poor prognostic factor in GC. Consideration of both the NLR and SDF-1 might give insights into antitumor immunity in GC.
Trastuzumab in combination with chemotherapy is the standard of care for patients with human epidermal growth factor receptor 2 (HER2)-positive breast and gastric cancers. Several resistance mechanisms against anti-HER2 therapy have been proposed. Src activation has been suggested to be responsible for the resistance of HER2-positive breast cancer. In our study, we generated four trastuzumab-resistant (HR) cancer cell lines from HER2-amplified gastric and biliary tract cancer cell lines (SNU-216, NCI-N87, SNU-2670, and SNU-2773). Elevated Src phosphorylation was detected in SNU2670HR and NCI-N87HR cell lines, but not in SNU216HR or SNU2773HR cell lines. In SNU216HR and SNU2773HR cell lines, phospho-FAK (focal adhesion kinase) was elevated. Bosutinib as a Src inhibitor suppressed growth, cell-cycle progression, and migration in both parental and HR cell lines. Specifically, Src interacted with FAK to affect downstream molecules such as AKT, ERK, and STAT3. Bosutinib showed more potent antitumor effects in Src-activated HR cell lines than parental cell lines. Taken together, this study suggests that Src inhibition may be an effective measure to overcome trastuzumab resistance in HER2-positive cancer. .
Purpose The DNA damage response (DDR) is a multi-complex network of signaling pathways involved in DNA damage repair, cell cycle checkpoints, and apoptosis. In the case of biliary tract cancer (BTC), the strategy of DDR targeting has not been evaluated, even though many patients have DNA repair pathway alterations. The purpose of this study was to test the DDR-targeting strategy in BTC using an ataxia-telangiectasia and Rad3-related (ATR) inhibitor. Materials and Methods A total of nine human BTC cell lines were used for evaluating anti-tumor effect of AZD6738 (ATR inhibitor) alone or combination with cytotoxic chemotherapeutic agents through MTT assay, colony-forming assays, cell cycle analyses, and comet assays. We established SNU478-mouse model for in vivo experiments to confirm our findings. Results Among nine human BTC cell lines, SNU478 and SNU869 were the most sensitive to AZD6738, and showed low expression of both ataxia-telangiectasia mutated (ATM) and p53. AZD6738 blocked p-Chk1 and p-glycoprotein and increased γH2AX, a marker of DNA damage, in sensitive cells. AZD6738 significantly increased apoptosis, G2/M arrest and p21, and decreased CDC2. Combinations of AZD6738 and cytotoxic chemotherapeutic agents exerted synergistic effects in colony-forming assays, cell cycle analyses, and comet assays. In our mouse models, AZD6738 monotherapy decreased tumor growth and the combination with cisplatin showed more potent effects on growth inhibition, decreased Ki-67, and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling than monotherapy with each drug. Conclusion In BTC, DDR targeting strategy using ATR inhibitor demonstrated promising antitumor activity alone or in combination with cytotoxic chemotherapeutic agents. This supports further clinical development of DDR targeting strategy in BTC.
Pancreatic cancer (PC) is one of the most lethal cancers worldwide, but there are currently no effective treatments. The DNA damage response (DDR) is under investigation for the development of novel anti-cancer drugs. Since DNA repair pathway alterations have been found frequently in PC, the purpose of this study was to test the DDR-targeting strategy in PC using WEE1 and ATM inhibitors. Materials and Methods We performed in vitro experiments using a total of ten human PC cell lines to evaluate antitumor effect of AZD1775 (WEE1 inhibitor) alone or combination with AZD0156 (ATM inhibitor). We established Capan-1-mouse model for in vivo experiments to confirm our findings. Results In our research, we found that WEE1 inhibitor (AZD1775) as single agent showed anti-tumor effects in PC cells, however, targeting WEE1 upregulated p-ATM level. Here, we observed that co-targeting of WEE1 and ATM acted synergistically to reduce cell proliferation and migration, and to induce DNA damage in vitro. Notably, inhibition of WEE1 or WEE1/ATM downregulated programmed cell death ligand 1 expression by blocking glycogen synthase kinase-3! serine 9 phosphorylation and decrease of CMTM6 expression. In Capan-1 mouse xenograft model, AZD1775 plus AZD0156 (ATM inhibitor) treatment reduced tumor growth and downregulated tumor expression of programmed cell death ligand 1, CMTM6, CD163, and CXCR2, all of which contribute to tumor immune evasion. Conclusion Dual blockade of WEE1 and ATM might be a potential therapeutic strategy for PC. Taken together, our results support further clinical development of DDR-targeting strategies for PC.
In pancreatic cancer, acquiring a sufficient amount of tumor tissue is an obstacle. The soluble form of PD-L1 (sPD-L1) may have immunosuppressive activity. Here, we evaluated the prognostic implications of sPD-L1 in unresectable pancreatic cancer. We prospectively enrolled 60 patients treated with first-line FOLFIRINOX chemotherapy. We collected blood samples at diagnosis, first response assessment and disease progression. Serum sPD-L1 levels were measured using enzyme-linked immunosorbent assays. The median sPD-L1 level was 1.7 ng/mL (range, 0.4–5.7 ng/mL). Patients with low sPD-L1 level (<4.6 ng/mL) at diagnosis showed better overall survival (OS) than those with high sPD-L1 level ( P = 0.015). Multivariate analysis identified sPD-L1 and the neutrophil-to-lymphocyte ratio as independent prognostic factors for OS. During chemotherapy, more patients achieved complete response (CR)/partial response (PR) as their best response when sPD-L1 was decreased at the first response assessment ( P = 0.038). In the patients who achieved CR/PR as their best response, sPD-L1 was significantly higher at the time of disease progression than at the first response assessment ( P = 0.025). In conclusion, the sPD-L1 level at diagnosis exhibits a prognostic value in pancreatic cancer. Furthermore, sPD-L1 dynamics correlate with disease course and could be used to understand various changes in the tumor microenvironment during chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.