Abstract. Visceral leishmaniasis (VL) is a vector-borne disease, highly influenced by environmental factors, which is an increasing public health problem in Iran, especially in the north-western part of the country. A geographical information system was used to extract data and map environmental variables for all villages in the districts of Kalaybar and Ahar in the province of East Azerbaijan. An attempt to predict VL prevalence based on an analytical hierarchy process (AHP) module combined with ordered weighted averaging (OWA) with fuzzy quantifiers indicated that the south-eastern part of Ahar is particularly prone to high VL prevalence. With the main objective to locate the villages most at risk, the opinions of experts and specialists were generalised into a group decision-making process by means of fuzzy weighting methods and induced OWA. The prediction model was applied throughout the entire study area (even where the disease is prevalent and where data already exist). The predicted data were compared with registered VL incidence records in each area. The results suggest that linguistic fuzzy quantifiers, guided by an AHP-OWA model, are capable of predicting susceptive locations for VL prevalence with an accuracy exceeding 80%. The group decision-making process demonstrated that people in 15 villages live under particularly high risk for VL contagion, i.e. villages where the disease is highly prevalent. The findings of this study are relevant for the planning of effective control strategies for VL in northwest Iran.
ObjectiveTo assess the effectiveness of community-wide deployment of insecticide–impregnated collars for dogs- the reservoir of Leishmania infantum–to reduce infantile clinical visceral leishmaniasis (VL).MethodsA pair matched–cluster randomised controlled trial involving 40 collared and 40 uncollared control villages (161 [95% C.L.s: 136, 187] children per cluster), was designed to detect a 55% reduction in 48 month confirmed VL case incidence. The intervention study was designed by the authors, but implemented by the Leishmaniasis Control Program in NW Iran, from 2002 to 2006.ResultsThe collars provided 50% (95% C.I. 17·8%–70·0%) protection against infantile VL incidence (0·95/1000/yr compared to 1·75/1000/yr). Reductions in incidence were observed across 76% (22/29) of collared villages compared to pair–matched control villages, with 31 fewer cases by the end of the trial period. In 11 paired villages, no further cases were recorded post–intervention, whereas in 7 collared villages there were 9 new clinical cases relative to controls. Over the trial period, 6,835 collars were fitted at the beginning of the 4 month sand fly season, of which 6.9% (95% C.I. 6.25%, 7.56%) were lost but rapidly replaced. Collar coverage (percent dogs collared) per village varied between 66% and 100%, with a mean annual coverage of 87% (95% C.I. 84·2, 89·0%). The variation in post-intervention clinical VL incidence was not associated with collar coverage, dog population size, implementation logistics, dog owner compliance, or other demographic variables tested. Larger reductions and greater persistence in incident case numbers (indicative of transmission) were observed in villages with higher pre-existing VL case incidence.ConclusionCommunity–wide deployment of collars can provide a significant level of protection against infantile clinical VL, achieved in this study by the local VL Control Program, demonstrating attributes desirable of a sustainable public health program. The effectiveness is not dissimilar to the community-level protection provided against human and canine infection with L. infantum.
Abstract. Visceral leishmaniasis (VL) is a potentially fatal vector-borne zoonotic disease, which has become an increasing public health problem in the north-western part of Iran. This work presents an environmental health modelling approach to map the potential of VL outbreaks in this part of the country. Radial basis functional link networks is used as a data-driven method for predictive mapping of VL in the study area. The high susceptibility areas for VL outbreaks account for 36.3% of the study area and occur mainly in the north (which may affect the neighbouring countries) and South (which is a warning for other provinces in Iran). These parts of the study area have many nomadic, riverside villages. The overall accuracy of the resultant map was 92% in endemic villages. Such susceptibility maps can be used as reconnaissance guides for planning of effective control strategies and identification of possible new VL endemic areas.
Fighting rabies in Eastern Europe, the Middle East and Central Asia-experts call for a regional initiative for rabies elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.