International audience¹⁰Be and ³⁶Cl cosmic ray exposure (CRE) and optically stimulated luminescence (OSL) dating of offset terraces have been performed to constrain the long-term slip-rate of the Dehshir fault. Analysis of cosmogenic ¹⁰Be and ³⁶Cl in 73 surface cobbles and 27 near-surface amalgams collected from inset terraces demonstrates the occurrence of a low denudation rate of 1 m.Ma⁻¹ and of a significant and variable inheritance from exposure prior to the aggradation of theses alluvial terraces. The significant concentrations of cosmogenic nuclides measured in the cobbles collected within the riverbeds correspond to 72 ± 20 ka of inheritance. The mean CRE age of the surface samples collected on the older terrace T3 is 469 ± 88 ka but the analysis of the distribution of ¹⁰Be concentration in the near-surface samples discard ages older than 412 ka. The mean CRE age of the surface samples collected on terrace T2 is 175 ± 62 ka but the ¹⁰Be depth profile discard ages older than 107 ka. For each terrace, there is a statistical outlier with a younger age of 49.9 ± 3.3 ka and 235.5 ± 35.4 ka on T2 and T3 respectively. The late sediments aggraded before the abandonment of T2 and inset levels, T1 b and T1a, yielded optically stimulated luminescence (OSL) ages of respectively 26.9 ± 1.3 ka, 21.9 ± 1.5 ka, and 10.0 ± 0.6 ka. For a given terrace, the OSL ages, where available, provide ages that are systematically younger than the CRE ages. These discrepancies between the CRE and OSL ages exemplify the variability of the inheritance and indicate the youngest cobble on a terrace, that minimizes the inheritance, is the most appropriate CRE age for approaching that of terrace abandonment. However, the upper bound on the age of abandonment of a terrace that is young with respect to the amount of inheritance is best estimated by the OSL dating of the terrace material. For such terraces, the CRE measurements are complementary of OSL dating and can be used to unravel the complex history of weathering and transport in the catchment of desert alluvial fans. This comprehensive set of dating is combined with morphological offsets ranging from 12 ± 2 m to 380 ± 20 m to demonstrate the Dehshir fault slips at a rate in the range 0.9 mm.yr⁻¹ - 1.5 mm.yr⁻¹. The variable inheritance exemplified here may have significant implications for CRE dating in arid endorheic plateaus such as Tibet and Altiplano
SUMMARY The Central Iran plateau appears aseismic during the last few millenniums based on instrumental and historical seismic records. Nevertheless, it is sliced by several strike‐slip faults that are hundreds of kilometres long. These faults display along‐strike, horizontal offsets of intermittent gullies that suggest the occurrence of earthquakes in the Holocene. Establishing this is crucial for accurately assessing the regional seismic hazard. The first palaeoseismic study performed on the 200‐km long, NS striking Anar fault shows that this right‐lateral fault hosted three large (Mw≈ 7) earthquakes during the Holocene or possibly Uppermost Pleistocene for the older one. These three seismic events are recorded within a sedimentary succession, which is not older than 15 ka, suggesting an average recurrence of at most 5 ka. The six optically stimulated luminescence ages available provide additional constraints and allow estimating that the three earthquakes have occurred within the following time intervals: 4.4 ± 0.8, 6.8 ± 1 and 9.8 ± 2 ka. The preferred age of the more recent event, ranging between 3600 and 5200 yr, suggests that the fault is approaching the end of its seismic cycle and the city of Anar could be under the threat of a destructive earthquake in the near future. In addition, our results confirm a previous minimum slip rate estimate of 0.8 ± 0.1 mm yr−1 for the Anar fault indicating that the westernmost prominent right‐lateral faults of the Central Iran plateau are characterized by slip rates close to 1 mm yr−1. These faults, which have repeatedly produced destructive earthquakes with large magnitudes and long recurrence interval of several thousands of years during the Holocene, show that the Central Iran plateau does not behave totally as a rigid block and that its moderate internal deformation is nonetheless responsible for a significant seismic hazard.
This study provides a multi-disciplinary overview of the seismology and geodetic data with tectonics analysis in order to provide an evaluation of stress trajectories, and probabilistic fault rupture hazard assessment. Based on the different scenarios obtained from the comparison of several overviews and their interpretation, we investigated the kinematics and active tectonics of different structural zones. In this study, the magnitudes and directions of seismic and geodetic strain rates (SSR and GSR) were evaluated using reliable earthquake focal mechanisms and all available GPS data (1999–2015) in the structural subzones of northern Iran, where have experienced more than 14 strong instrumental earthquakes (Mw ≥ 6). In addition, a tectonic stress model was inferred from the Focal Mechanism Stress Inversion (FMSI). The new crustal stress map was proposed by the weighted average analysis of the SSR, GSR, and FMSI. N35.5° E and N104° E were estimated for the Alborz and Talesh mountains, respectively. The numerical analysis of stress regimes confirms the slip partitioning mechanism of oblique shortening on the sub-parallel thrusts and strike-slip faults in the area. Four main stress regime categories were defined, including thrust (49.37%), strike-slip (39.24%), thrust with a strike-slip component (2.53%), normal (1.27%), and unknown faulting (7.59%). Seismic and geodetic moment rates (SMR and GMR) and their comparison were also calculated in order to evaluate the function of these parameters in determining the seismicity arrangement. The ratio of the seismic/geodetic moment rates for the area is ~70.7%. This ratio for the Alborz, western Koppeh-Dagh, north part of Central Iran, South Caspian Basin, and Talesh is ~0.9, 0.3, 11.9, 0.3, and 57.3, respectively, which indicates the most elastic energy has been released in the Talesh and the north part of Central Iran. The comparison of geodetic moment rates in the subzones of the area indicates that geodetic deformation is high in the Central Alborz (networks 8, 9, 17) and western Koppeh-Dagh (networks 5, 13).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.