The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call "Multiple Impulse Method (MIM)", where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code
A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA). The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding the codes of high rates. We simulated our algorithm in various transmission channels. The performance of this algorithm is investigated and compared with competitor decoding algorithms including Maini and Shakeel ones. The results show that the proposed algorithm gives large gains over the Chase-2 decoding algorithm and reach the performance of the OSD-3 for some quadratic residue (QR) codes. Further, we define a new crossover operator that exploits the domain specific information and compare it with uniform and two point crossover. The complexity of this algorithm is also discussed and compared to other algorithms.
In this paper, we describe a hard-decision decoding technique based on Genetic Algorithms (HDGA), which is applicable to the general case of error correcting codes where the only known structure is given by the generating matrix G. Then we present a new soft-decision decoding based on HDGA and the Chase algorithm (SDGA). The performance of some binary and non-binary Linear Block Codes are given for HDGA and SDGA over Gaussian and Rayleigh channels. The performances show that the HDGA decoder has the same performances as the Berlekamp-Massey Algorithm (BMA) in various transmission channels. On the other hand, the performances of SDGA are equivalent to soft-decision decoding using Chase algorithm and BMA (Chase-BMA). The complexity of decoders proposed is also discussed and compared to those of other decoders
<p><span>Tifinagh handwritten character recognition has been a challenging problem due to the similarity and variability of its alphabets. This paper proposes an optimized convolutional neural network (CNN) architecture for handwritten character recognition. The suggested model of CNN has a multi-layer feed-forward neural network that gets features and properties directly from the input data images. It is based on the newest deep learning open-source Keras Python library. The novelty of the model is to optimize the optical character recognition (OCR) system in order to obtain best performance results in terms of accuracy and execution time. The new optical character recognition system is tested on a customized dataset generated from the amazigh handwritten character database. Experimental results show a good accuracy of the system (99.27%) with an optimal execution time of the classification compared to the previous works.</span></p>
<p class="Abstract"><span id="docs-internal-guid-d3fe8e21-7fff-17fc-df0e-00893428243c"><span>The Merkle-Hellman (MH) cryptosystem is one of the earliest public key cryptosystems, which is introduced by Ralph Merkle and Martin Hellman in 1978 based on an NP-hard problem, known as the subset-sum problem. Furthermore, ant colony optimization (ACO) is one of the most nature-inspired meta-heuristic optimization, which simulates the social behaviour of ant colonies. ACO has demonstrated excellent performance in solving a wide variety of complex problems. In this paper, we present a novel ant colony optimization (ACO) based attack for cryptanalysis of MH cipher algorithm, where two different search techniques are used. Moreover, experimental study is included, showing the effectiveness of the proposed attacking scheme. The results show that ACO based attack is more suitable than many other algorithms like genetic algorithm (GA) and particle swarm optimization (PSO).</span></span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.