The differentiation of stem cells into smooth muscle cells (SMCs) plays an important role in vascular development and remodeling. In addition, stem cells represent a potential source of SMCs for regenerative medicine applications such as constructing vascular grafts. Previous studies have suggested that various biochemical factors, including transforming growth factor-β (TGF-β) and the Notch pathway, may play important roles in vascular differentiation. However, the interactions of these two signaling pathways in the differentiation of bone marrow mesenchymal stem cells (MSCs) have not been clearly defined. In this study, we profiled the gene expression in MSCs in response to TGF-β, and showed that TGF-β induced Notch ligand Jagged 1 (JAG1) and SMC markers, including smooth muscle α-actin (ACTA2), calponin 1 (CNN1), and myocardin (MYOCD), which were dependent on the activation of SMAD3 and Rho kinase. In addition, knocking down JAG1 expression partially blocked ACTA2 and CNN1 expression and completely blocked MYOCD expression, suggesting that JAG1 plays an important role in TGF-β-induced expression of SMC markers. On the other hand, the activation of Notch signaling induced the expression of SMC markers in MSCs and human embryonic stem cells (hESCs). Notch activation in hESCs also resulted in an increase of neural markers and a decrease of endothelial markers. These results suggest that Notch signaling mediates TGF-β regulation of MSC differentiation and that Notch signaling induces the differentiation of MSCs and hESCs into SMCs, which represents a novel mechanism involved in stem cell differentiation.
Renal ischemia-reperfusion injury (IRI) after kidney transplantation is a major cause of delayed graft function. Even though IRI is recognized as a highly coordinated and specific process, the pathways and mechanisms through which the innate response is activated are poorly understood. In this study, we used a mouse model of acute kidney IRI to examine whether the interactions of costimulatory receptor CD137 and its ligand (CD137L) are involved in the early phase of acute kidney inflammation caused by IRI. We report here that the specific expressions of CD137 on natural killer cells and of CD137L on tubular epithelial cells (TECs) are required for acute kidney IRI. Reverse signaling through CD137L in TECs results in their production of the chemokine (C-X-C motif) receptor 2 ligands CXCL1 and CXCL2 and the subsequent induction of neutrophil recruitment, resulting in a cascade of proinflammatory events during kidney IRI. Our findings identify an innate pathogenic pathway for renal IRI involving the natural killer cell-TECneutrophil axis, whereby CD137-CD137L interactions provide the causal contribution of epithelial cell dysregulation to renal IRI. The CD137L reverse signaling pathway in epithelial cells therefore may represent a good target for blocking the initial stage of inflammatory diseases, including renal IRI.acute inflammation | costimulatory ligand
The aim of this study was to determine whether intra-amniotic infection/inflammation (IAI) was associated with subsequent ruptured membranes in women with preterm labor and intact membranes who had a clinically indicated amniocentesis. This retrospective cohort study included 237 consecutive women with preterm labor (20-34.6 weeks) who underwent amniocentesis. The clinical and laboratory parameters evaluated included demographic variables, gestational age, C-reactive protein (CRP) and amniotic fluid (AF) white blood cell, interleukin-6 (IL-6) and culture results. IAI was defined as a positive AF culture and/or an elevated AF IL-6 level (>2.6 ng/mL). The primary outcome was ruptured membranes in the absence of active labor occurring within 48 hours of amniocentesis. Preterm premature rupture of membranes subsequently developed in 10 (4.2%) women within 48 hr of amniocentesis. Multivariate analysis demonstrated that only IAI was independently associated with the ruptured membranes occurring within 48 hr of amniocentesis. In the predictive model based on variables assessed before amniocentesis, only CRP level was retained. IAI is an independent risk factor for subsequent ruptured membranes after clinically indicated amniocentesis in preterm labor. Prior to amniocentesis, measurement of serum CRP level can provide a risk assessment for the subsequent development of ruptured membranes after the procedure.
Toxoplasma gondii (T. gondii) microneme protein 8 (MIC8) represents a novel, functional distinct invasion factor. In this study, we generated virus-like particles (VLPs) targeting Toxoplasma gondii MIC8 for the first time, and investigated the protection against highly virulent RH strain of T. gondii in a mouse model. We found that VLP vaccination induced Toxoplasma gondii-specific IgG and IgG1 antibody responses in the sera. Upon challenge infection with RH strain of T. gondii tachyzoites, vaccinated mice showed a significant increase of both IgG antibodies in sera and IgA antibodies in feces compared to those before challenge, and a rapid expansion of both germinal center B cell (B220+, GL7+) and T cell (CD4+, CD8+) populations. Importantly, intranasally immunized mice showed higher neutralizing antibodies and displayed no proinflammatory cytokine IFN-γ in the spleen. Mice were completely protected from a lethal challenge infection with the highly virulent T. gondii (RH) showing no body weight loss (100% survival). Our study shows the effective protection against T. gondii infection provided by VLPs containing microneme protein 8 of T. gondii, thus indicating a potential T. gondii vaccine candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.