The authors' full names, academic degrees, and affiliations are listed in the Appendix. Address reprint requests to Dr. Kan at P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China, or at kanh@ fudan . edu . cn.Drs. Liu and R. Chen and Drs. Gasparrini and Kan contributed equally to this article.
ObjectiveTo inform potential pathophysiological mechanisms of air pollution effects on cardiovascular disease (CVD), we investigated short-term associations between ambient air pollution and a range of cardiovascular events from three national databases in England and Wales.MethodsUsing a time-stratified case-crossover design, over 400 000 myocardial infarction (MI) events from the Myocardial Ischaemia National Audit Project (MINAP) database, over 2 million CVD emergency hospital admissions and over 600 000 CVD deaths were linked with daily mean concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter less than 10 μm in aerodynamic diameter (PM10), particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) and sulfur dioxide (SO2), and daily maximum of 8-hourly running mean of O3 measured at the nearest air pollution monitoring site to the place of residence. Pollutant effects were modelled using lags up to 4 days and adjusted for ambient temperature and day of week.ResultsFor mortality, no CVD outcome analysed was clearly associated with any pollutant, except for PM2.5 with arrhythmias, atrial fibrillation and pulmonary embolism. With hospital admissions, only NO2 was associated with a raised risk: CVD 1.7% (95% CI 0.9 to 2.6), non-MI CVD 2.0% (1.1 to 2.9), arrhythmias 2.9% (0.6 to 5.2), atrial fibrillation 2.8% (0.3 to 5.4) and heart failure 4.4% (2.0 to 6.8) for a 10th–90th centile increase. With MINAP, only NO2 was associated with an increased risk of MI, which was specific to non-ST-elevation myocardial infarction (non-STEMIs): 3.6% (95% CI 0.4 to 6.9).ConclusionsThis study found no clear evidence for pollution effects on STEMIs and stroke, which ultimately represent thrombogenic processes, though it did for pulmonary embolism. The strongest associations with air pollution were observed with selected non-MI outcomes.
Effects of high daily summer temperatures on mortality in English regions are quite well approximated by threshold-linear models that can be predicted from the region's climate (93rd centile and mean summer temperature). It remains to be seen whether similar relationships fit other countries and climates or change over time, such as with climate change.
OBJECTIVE To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. DESIGNTwo stage time series analysis.SETTING 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. POPULATIONDeaths for all causes or for external causes only registered in each city within the study period. MAIN OUTCOME MEASURESDaily total mortality (all or non-external causes only). RESULTSA total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 µg/m 3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 µg/ m 3 ) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 µg/m 3 ), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. CONCLUSIONSResults suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies.Cite this as: BMJ 2020;368:m108 http://dx. WHAT IS ALREADY KNOWN ON THIS TOPICStudies on the short term association between ground level ozone and mortality have been mostly performed in a few locations, in limited geographical areas, and using various designs and modelling approaches Although most of the studies found positive associations, results are heterogeneous, and a critical comparison across different countries and regions is made difficult by the limited statistical power and differences across studies Estimates of the association are usually reported as relative risks, a summary measure that does not quantify the actual health impact and makes it difficult to evaluate comparative health benefits of different regulatory limits WHAT THIS STUDY ADDSThis large multi-country study found increased mortality risks associated with exposure to ozone across locations and countries, with an average 0.18% per 10 µg/m3, reinforcing the evidence of a potential causal association Risk estimates were translated in measures of excess mortality, and it was found that more than 6000 deaths each year, corresponding to 0.20% of the total mortality, would have been avoided in the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.