Recent diagnostic procedure advances have considerably improved early lung cancer detection. However, the invasive, unpleasant, and inconvenient nature of current diagnostic procedures limits their application. There is a great need for novel noninvasive biomarkers for early lung cancer diagnosis. In the present study, we aimed to determine whether microRNA (miRNA) blood signatures are suitable for early detection of lung cancer. Using quantitative reverse transcriptase PCR analysis, we first selected and identified three aberrant plasma expression miRNAs (miR-21, miR-145, and miR-155) in a training set of 62 patients and 60 healthy smokers to define a panel that had high diagnostic efficiency for lung cancer. Then, we validated the detective ability of this miRNA panel in a testing set of 34 malignant tumor patients, 30 patients with benign pulmonary nodules and 32 healthy smokers. In the training set, miR-21 and miR-155 showed higher plasma expression levels, whereas miR-145 showed a lower expression level in patients with malignant cancer, compared with healthy controls (P ≤ 0.001). The three miRNAs used in combination produced the area under receiver operating characteristic curve at 0.847, which helped distinguish lung cancer from healthy smokers with 69.4% sensitivity and 78.3% specificity. A logistic regression model with the best prediction was constructed on the basis of miR-21, miR-145, and miR-155. Validation of the miRNA panel in the testing set confirmed their diagnostic value, which yields a significant improvement over any single one. Plasma miR-21, miR-145, and miR-155 have strong potential as novel noninvasive biomarkers for early detection of lung cancer.
To examine the association between genetic polymorphisms of XRCC1 Arg399Gln(G→A) and response to oxaliplatin-based chemotherapy in advanced colorectal cancer. XRCC1 genotypes of totally 99 patients(37 stage III, 62 stage IV)with advanced colorectal cancer treated with oxaliplatin-based chemotherapy were detected by TaqMan-MGB probe allelic discrimination method. And clinical response of 62 patients in stage IVafter 2 to 3 cycles of chemotherapy were evaluated. Also time to progress (TTP) of all patients were evaluated. Of the genotype frequencies in all patients, up to 52.53 % were G/G genotype, 9.09 % were A/A genotype, and 38.38 % were G/A genotype. The response rate (CR+PR) of 62 patients in stage IV was 61.29 % (19/31). Patients with G/G genotype showed enhanced respond to chemotherapy compared to those with G/A+A/A (x(2) = 5.6, P = 0.029; OR = 3.845, 95 %CI = 1.231 ~ 12.01, P = 0.018). Individuals with the G/G genotype had a TTP of 10.0 (8.88-11.12) months, those with the G/A+A/A genotype had an TTP of 5.0(4.26-5.74) months. The log-rank test was marginally significant (x(2) = 29.20, P < 0.01). The Cox proportional hazards model, adjusted for stage, performance status, and chemotherapy regimen, showed that only XRCC1 G/G genotypes increases the OR significantly (OR = 3.555; 95 % CI, 2.119 ~ 5.963; P < 0.01). The results suggest that XRCC1 Arg399Gln polymorphisms is associated with the response to oxaliplatin-based chemotherapy and time to progression in advanced colorectal cancer in Chinese population. It is proposed that the XRCC1 Arg399Gln polymorphism should be routinely detected to screen patients who are more likely benefit from oxaliplatin-based treatment.
Type 2 diabetes mellitus (T2DM) and T2DM-related complications [such as retinopathy, nephropathy, and cardiovascular diseases (CVDs)] are the most prevalent metabolic diseases. Intriguingly, overwhelming findings have shown a strong association of the gut microbiome with the etiology of these diseases, including the role of aberrant gut bacterial metabolites, increased intestinal permeability, and pathogenic immune function affecting host metabolism. Thus, deciphering the specific microbiota, metabolites, and the related mechanisms to T2DM-related complications by combined analyses of metagenomics and metabolomics data can lead to an innovative strategy for the treatment of these diseases. Accordingly, this review highlights the advanced knowledge about the characteristics of the gut microbiota in T2DM-related complications and how it can be associated with the pathogenesis of these diseases. Also, recent studies providing a new perspective on microbiota-targeted therapies are included.
BackgroundRhoA and RhoC have been proved to be over-expressed in many solid cancers, including colorectal cancer. The reduction of RhoA and RhoC expression by RNA interference (RNAi) resulted growth inhibition of cancer cells. The present study was to evaluate the effect of silencing of RhoA and RhoC expression by RNAi on growth of human colorectal carcinoma (CRC) in tumor-bearing nude mice in vivo.MethodsTo establish HCT116 cell transplantable model, the nude mice were subcutaneously inoculated with 1.0 × 107 HCT116 cells and kept growing till the tumor xenografts reached 5-7 mm in diameter. Then the mice were randomly assigned to three groups(seven mice in each group): (1) normal saline(NS) group, (2)replication-defective recombinant adenovirus carrying the negative control shRNA (Ad-HK) group and (3)replication-defective recombinant adenovirus carrying the 4-tandem linked RhoA and RhoC shRNAs (Ad-RhoA-RhoC) group. Ad-HK (4 × 108 pfu, 30 ul/mouse), Ad-RhoA-RhoC (4 × 108 pfu, 30 ul/mouse) or PBS (30 ul/mouse) was injected intratumorally four times once every other day. The weight and volumes of tumor xenografts were recorded. The levels of RhoA and RhoC mRNA transcripts and proteins in tumor xenografts were detected by reverse quantitative transcription polymerase chain reaction (QRT-PCR) and immunohistochemical staining respectively. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect the death of cells.ResultsThe xenografts in mice could be seen at 5th day from the implantation of HCT116 cells and all had reached 5-7 mm in size at 9th day. After injection intratumorally, the growth speed of tumor xenografts in Ad-RhoA-RhoC group was significantly delayed compared with those in NS and Ad-HK group(P < 0.05). The results of QRT-PCR showed that mRNA levels of RhoA and RhoC reduced more in Ad-RhoA-RhoC group than those in NS and Ad-HK group. The relative RhoA and RhoC mRNA transcripts were decreased to 48% and 43% respectively (P < 0.05). Immunohistochemical analyses of tumor xenograft sections also revealed the decreased RhoA and RhoC expression in Ad-RhoA-RhoC group. TUNEL assay also showed higher death of tumor xenograft tissue cells in Ad-RhoA-RhoC group.ConclusionRecombinant adenovirus mediated RhoA and RhoC shRNA in tandem linked expression may inhibit the growth of human colorectal tumor xenografts in vivo. These results indicate that RhoA and RhoC might be potential targets for gene therapy in colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.