The unique properties and numerous applications of nanocrystalline titanium dioxide (TiO2) are stimulating research on improving the existing and developing new titanium dioxide synthesis methods. In this work, we demonstrate for the first time the possibilities of the extraction–pyrolytic method (EPM) for the production of nanocrystalline TiO2 powders. A titanium-containing precursor (extract) was prepared by liquid–liquid extraction using valeric acid C4H9COOH without diluent as an extractant. Simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA–DSC), as well as the Fourier-transform infrared (FTIR) spectroscopy were used to determine the temperature conditions to fabricate TiO2 powders free of organic impurities. The produced materials were also characterized by X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). The results showed the possibility of the fabrication of storage-stable liquid titanium (IV)-containing precursor, which provided nanocrystalline TiO2 powders. It was established that the EPM permits the production of both monophase (anatase polymorph or rutile polymorph) and biphase (mixed anatase–rutile polymorphs), impurity-free nanocrystalline TiO2 powders. For comparison, TiO2 powders were also produced by the precipitation method. The results presented in this study could serve as a solid basis for further developing the EPM for the cheap and simple production of nanocrystalline TiO2-based materials in the form of doped nanocrystalline powders, thin films, and composite materials.
Interest in magnetic nanoparticles is primarily due to their practical use. In this work, for the production of nanocrystalline powders of pure and gadolinium doped iron oxides, the extraction-pyrolytic method (EPM) was used. As a precursor, either iron-containing extract (iron (III) caproate in caproic acid) or its mixture with gadolinium-containing extract (gadolinium (III) valerate in valeric acid) was used. The mixed precursor contained 0.5 mol %, 2.5 mol %, 12.5 mol %, 50 mol %, and 75 mol % gadolinium in relation to the iron content. The formation of iron oxide phases, depending on the preparation conditions, was investigated. According to the results obtained, it was demonstrated that the presence of more than 2.5 mol % gadolinium additive in the mixed precursor inhibits the magnetite-to-hematite transformation process during thermal treatment. Produced samples were characterized by XRD and SEM methods, and the magnetic properties were studied.
Due to its magnetic, electrical, absorption, and emission properties, nanoscale gadolinium oxide is widely used in various fields. In this research, nanocrystalline Gd2O3 powders and films on glass substrates have been produced by the extraction-pyrolytic method. X-ray diffraction analysis revealed the formation of single phase Gd2O3 with cubic crystal structure and the mean crystallite size from 9 to 25 nm in all produced materials. The morphology of samples has been characterized by scanning electron microscopy and transmission electron microscopy.
The aims of this study were to investigate the effects of Sr-and Mn-doped ions on the sintering behaviors, microstructure and mechanical properties of the bioceramics processed by single-and two-step microwave sintering (MWSSS and MWTSS). Nano-sized calcium hydroxyapatite powders doped with Sr and Mn ions, obtained by modified precipitation synthesis, were isostatically pressed at 400 MPa and processed by MWSSS and MWTSS at different temperatures. In all cases during the sintering, the doped HAP powders turned into biphasic mixtures of HAP and TCP, but the amount of TCP was certainly lower in the case of MWTSS. It was shown that the doped ions significantly affected: density, microstructure, grain size, porosity, hardness, and fracture toughness of the processed bioceramics. Two-step microwave sintering was successfully applied for the processing of HAP/ TCP bioceramics doped with strontium and manganese ions. Both two-step microwave sintered doped bioceramics had similar and high hardness values, but the strontiumsubstituted bioceramic material certainly had higher fracture toughness (1.54 MPam 1/2 ), with an average grain size of 195 nm. Based on the results presented in this paper, it was concluded that the two-step microwave sintered strontium-doped bioceramics could be suitable materials in the bone regenerative field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.