Because the complexity of metabolism cannot be intuitively understood or analyzed, computational methods are indispensable for studying biochemistry and deepening our understanding of cellular metabolism to promote new discoveries. We used the computational framework BNICE.ch along with cheminformatic tools to assemble the whole theoretical reactome from the known metabolome through expansion of the known biochemistry presented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We constructed the ATLAS of Biochemistry, a database of all theoretical biochemical reactions based on known biochemical principles and compounds. ATLAS includes more than 130 000 hypothetical enzymatic reactions that connect two or more KEGG metabolites through novel enzymatic reactions that have never been reported to occur in living organisms. Moreover, ATLAS reactions integrate 42% of KEGG metabolites that are not currently present in any KEGG reaction into one or more novel enzymatic reactions. The generated repository of information is organized in a Web-based database ( http://lcsb-databases.epfl.ch/atlas/ ) that allows the user to search for all possible routes from any substrate compound to any product. The resulting pathways involve known and novel enzymatic steps that may indicate unidentified enzymatic activities and provide potential targets for protein engineering. Our approach of introducing novel biochemistry into pathway design and associated databases will be important for synthetic biology and metabolic engineering.
Drug discovery and development is a high-risk enterprise that requires significant investments in capital, time and scientific expertise. The studies of xenobiotic metabolism remain as one of the main topics in the research and development of drugs, cosmetics and nutritional supplements. Antihypertensive drugs are used for the treatment of high blood pressure, which is one the most frequent symptoms of the patients that undergo cardiovascular diseases such as myocardial infraction and strokes. In current cardiovascular disease pharmacology, four drug clusters - Angiotensin Converting Enzyme Inhibitors, Beta-Blockers, Calcium Channel Blockers and Diuretics - cover the major therapeutic characteristics of the most antihypertensive drugs. The pharmacokinetic and specifically the metabolic profile of the antihypertensive agents are intensively studied because of the broad inter-individual variability on plasma concentrations and the diversity on the efficacy response especially due to the P450 dependent metabolic status they present. Several computational methods have been developed with the aim to: (i) model and better understand the human drug metabolism; and (ii) enhance the experimental investigation of the metabolism of small xenobiotic molecules. The main predictive tools these methods employ are rule-based approaches, quantitative structure metabolism/activity relationships and docking approaches. This review paper provides detailed metabolic profiles of the major clusters of antihypertensive agents, including their metabolites and their metabolizing enzymes, and it also provides specific information concerning the computational approaches that have been used to predict the metabolic profile of several antihypertensive drugs.
Alzheimer's disease (AD) has been associated with up-regulation of pro-inflammatory cytokines (e.g., specific gene variants for TNF-alpha; IL-6; IFN-gamma) and low plasma levels of cyanocobalamin (vitamin B12). Our goal was to relate B12 levels to AD symptoms and to expression of pro-inflammatory cytokines. Clinical manifestations were investigated for a case series of fifty-five outpatients using the MMSE, Neuropsychiatric Inventory (NPI) and Cornell Scale for Depression in Dementia (CDDS). Plasma B12 levels were measured by radioligand binding assay. Basal and PMA-stimulated levels of IFN-gamma, TNF-alpha, and IL-6 were measured by ELISPOT (PBMC culture supernatant). 47 patients were genotyped for APOE. Ten patients (18%) had their B12 levels below < 250 pg/ml. They did not statistically differ from those 45 who had normal levels in most demographic and clinical features; their MMSE scores were lower (14.7 vs 19.6 p=0.03) but not after adjustment for disease duration. A greater basal production of IL-6 was reported in patients who had low B12 levels compared to normal B12 subjects (1333 pg/ml vs 976 p< 0.01); this association was confirmed after controlling for age of onset and APOE genotype. In conclusion, low B12 level is associated with greater production of IL-6 in peripheral blood mononuclear cells. Further research is warranted to elucidate whether this neuroinflammatory effect of cobalamin is implicated in the pathophysiology of AD.
The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article.
Interleukin-1 (IL1) can contribute to pathophysiology of Alzheimer's disease (AD) by promoting deposition of amyloid-beta in the brain. The gene encoding IL1 alpha (IL1A) has a common polymorphism in its 5' regulatory region (rs1800587) with possible functional effects. IL1A T/T genotype has been associated with AD but the overall effect is modest and negative studies have been published. The aim of this study was to investigate the association of the IL1A rs1800587 polymorphism with AD in two independent case-control groups from Greece (Athens) and Italy (Faenza and Granarolo). Preliminary results from the ongoing sample (110 patients with sporadic AD and 130 nonpsychiatric controls) showed no association between IL1A variants and AD, however C/T heterozygotes had more severe depression in AD (Cornell Scale for Depression in Dementia) compared to other genotypes (F = 4.56, d.f = 1, p = 0.037) after controlling for age, illness duration and cognitive impairment (MMSE). Despite the small sample size and the possibility of a false negative finding, our preliminary data support the hypothesis the IL1A rs1800587 variants are not associated with AD. The effect of the IL1A on depressive symptomatology warrants further investigations, however the lack of a gene-dose relationship would suggest a false positive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.