Summary Circulating tumor cells (CTCs) are shed from solid cancers in the form of single or clustered cells, and the latter display an extraordinary ability to initiate metastasis. Yet, the biological phenomena that trigger the shedding of CTC clusters from a primary cancerous lesion are poorly understood. Here, when dynamically labeling breast cancer cells along cancer progression, we observe that the majority of CTC clusters are undergoing hypoxia, while single CTCs are largely normoxic. Strikingly, we find that vascular endothelial growth factor (VEGF) targeting leads to primary tumor shrinkage, but it increases intra-tumor hypoxia, resulting in a higher CTC cluster shedding rate and metastasis formation. Conversely, pro-angiogenic treatment increases primary tumor size, yet it dramatically suppresses the formation of CTC clusters and metastasis. Thus, intra-tumor hypoxia leads to the formation of clustered CTCs with high metastatic ability, and a pro-angiogenic therapy suppresses metastasis formation through prevention of CTC cluster generation.
We have found that overexpression of human ornithine decarboxylase (ODC) induces cell transformation in NIH 3T3 and Rat-1 cells (M. Auvinen, A. Paasinen, L. C. Andersson, and E. Hölttä, Nature (London) 360:355-358, 1992). The ODC-transformed cells display increased levels of tyrosine phosphorylation, in particular of a cluster of 130-kDa proteins. Here we show that one of the proteins with enhanced levels of tyrosine phosphorylation in ODC-overexpressing cells is the previously described p130 substrate of pp60v-src, known to associate also with v-Crk and designated p130CAS. We also studied the role of protein tyrosine phosphorylation in the ODC-induced cell transformation by exposing the cells to herbimycin A, a potent inhibitor of Src-family kinases, and to other inhibitors of protein tyrosine kinases. Treatment with the inhibitors reversed the phenotype of ODC-transformed cells to normal, with an organized, filamentous actin cytoskeleton. Coincidentally, the tyrosine hyperphosphorylation of p130 was markedly reduced, while the level of activity of ODC remained highly elevated. A similar reduction in pp130 phosphorylation and reversion of morphology by herbimycin A were observed in v-src- and c-Ha-ras-transformed cells. In addition, we show that expression of antisense mRNA for p130CAS resulted in reversion of the transformed phenotype of all these cell lines. An increased level of tyrosine kinase activity, not caused by c-Src or c-Abl, was further detected in the cytoplasmic fraction of ODC-transformed cells. Preliminary characteristics of this kinase are shown. These data indicate that p130CAS is involved in cell transformation by ODC, c-ras, and v-src oncogenes, raise the intriguing possibility that p130CAS may be generally required for transformation, and imply that there is at least one protein tyrosine kinase downstream of ODC that is instrumental for cell transformation.
All mammalian cells absolutely require polyamines (putrescine, spermidine, and spermine) for growth. Here we show that the overexpression of cDNA for S-adenosylmethionine decarboxylase (AdoMetDC), the main regulatory enzyme in the biosynthesis of higher polyamines, induces transformation of rodent fibroblasts when expressed in the sense or the antisense orientation. Both transformants were able to induce invasive tumors in nude mice. Neither transformation was associated with activation of the mitogen-activated protein kinases Erk1 and Erk2. Instead, the AdoMet DC sense, but not antisense, transformants displayed constitutive activation of the c-Jun NH2-terminal kinase (JNK) pathway. However, both transformations converged on persistent phosphorylation of endogenous c-Jun at Ser73. The phenotype of the AdoMetDC sense transformants was reversed by expression of dominant-negative mutants of SEK1 (MKK4), JNK1, and c-Jun (TAM-67), which were also found to impair cytokinesis. Similarly, TAM-67 reverted the morphology of the AdoMetDC-antisense expressors. This report is the first demonstration of a protein whose overexpression or block of synthesis can induce cell transformation. In addition, we show that the polyamine biosynthetic enzymes require c-Jun activation for eliciting their biological effects.
While it is known that the constitutive activity of a variety of signal transduction molecules leads to cell transformation, a key unresolved question is whether these wirings converge to a common intermediate(s) that dictates transformation. In this study, we investigated whether NIH3T3 and Rat-1 cells transformed by human ornithine decarboxylase (ODC), c-Ha-rasVal12 and temperature-sensitive v-src oncogene display common alteration(s) in the components that relay PDGF-mediated signals in normal ®broblasts. The ras-and ODCtransformed cells did not show constitutively elevated tyrosine phosphorylation of the phospholipase Cg-1 (PLCg-1), RasGTPase-activating protein (GAP), phosphotyrosine phosphatase Syp, Shc proteins, and phosphatidylinositol 3-kinase (PI3-K) or activation of the MAP kinase (Erk1 and Erk2), p70 S6 kinase or the Janus protein tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) protein-1 pathways. Instead, the Ras nucleotide exchange factor Sos-1 and Raf-1 kinase exhibited constitutive phosphorylations, as deduced from their electrophoretic mobility shifts in polyacrylamide gels. Hence a kinase distinct from Erk1 and Erk2, previously known to feedback phosphorylate Sos-1 and Raf-1, is responsible for the phosphorylation of these molecules in the transformants. We also demonstrate that the ras-and ODC-transformed cells exhibit loss of both the PDGF aand b-receptors, while the v-Src-transformants show a predominant reduction in the b-receptors. Moreover, all the transformed cell lines were found to display a constitutive increase in phosphorylation of c-Jun on serines 63 and 73, which appears to be governed by an as yet unknown kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.