A novel Lamb wave resonator with fully suppressed acoustic radiation in water is proposed for high-resolution masssensitive detection of biomolecules. The elimination of acoustic radiation is achieved by slowing down the Lamb wave to a velocity lower than the sound speed in water. This enables high-qualityfactor resonance in water and reduces the sensing frequency noise. High aspect ratio electrodes (HAREs) are used to slow down the Lamb wave. The elastic resonance and large surface area of the HAREs can also enhance the mass sensitivity of the device. The improved mass sensitivity together with the low frequency noise substantially improves the overall sensing resolution. Although reducing the plate thickness can also slow down the Lamb wave, it makes the device very fragile and not practical to use. In contrast, slowing down the Lamb wave by increasing electrode height allows the use of thick plates which is robust. In this paper, the behavior and performance of the proposed high aspect ratio electrode Lamb wave resonator (HARE-LWR) are theoretically analyzed using finite element method simulations. Optimum design parameters were found through the simulations. Reported results show that a significant figure of merit improvement was achieved by the proposed HARE-LWR design.
The human body’s temperature is one of the most important vital markers due to its ability to detect various diseases early. Accurate measurement of this parameter has received considerable interest in the healthcare sector. We present a novel study on the optimization of a temperature sensor based on silver interdigitated electrodes (IDEs) and carbon-sensing film. The sensor was developed on a flexible Kapton thin film first by inkjet printing the silver IDEs, followed by screen printing a sensing film made of carbon black. The IDE finger spacing and width of the carbon film were both optimized, which considerably improved the sensor’s sensitivity throughout a wide temperature range that fully covers the temperature of human skin. The optimized sensor demonstrated an acceptable temperature coefficient of resistance (TCR) of 3.93 × 10−3 °C−1 for temperature sensing between 25 °C and 50 °C. The proposed sensor was tested on the human body to measure the temperature of various body parts, such as the forehead, neck, and palm. The sensor showed a consistent and reproducible temperature reading with a quick response and recovery time, exhibiting adequate capability to sense skin temperatures. This wearable sensor has the potential to be employed in a variety of applications, such as soft robotics, epidermal electronics, and soft human–machine interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.