Recent predictions and experimental observations of high Tc superconductivity in hydrogen-rich materials at very high pressures are driving the search for superconductivity in the vicinity of room temperature. We have developed a novel preparation technique that is optimally suited for megabar pressure syntheses of superhydrides using pulsed laser heating while maintaining the integrity of sample-probe contacts for electrical transport measurements to 200 GPa. We detail the synthesis and characterization, including four-probe electrical transport measurements, of lanthanum superhydride samples that display a significant drop in resistivity on cooling beginning around 260 K and pressures of 190 GPa. Additional measurements on two additional samples synthesized the same way show resistance drops beginning as high as 280 K at these pressures. The drop in resistance at these high temperatures is not observed in control experiments on pure La as well as in partially transformed samples at these pressures, and x-ray diffraction as a function of temperature on the superhydride reveal no structural changes on cooling. We suggest that the resistance drop is a signature of the predicted superconductivity in LaH10 near room temperature, in good agreement with density functional structure search and BCS theory calculations. *
Recent theoretical calculations predict that megabar pressure stabilizes very hydrogen-rich simple compounds having new clathrate-like structures and remarkable electronic properties including room-temperature superconductivity. X-ray diffraction and optical studies demonstrate that superhydrides of lanthanum can be synthesized with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. The results match the predicted cubic metallic phase of LaH having cages of thirty-two hydrogen atoms surrounding each La atom. Upon decompression, the fcc-based structure undergoes a rhombohedral distortion of the La sublattice. The superhydride phases consist of an atomic hydrogen sublattice with H-H distances of about 1.1 Å, which are close to predictions for solid atomic metallic hydrogen at these pressures. With stability below 200 GPa, the superhydride is thus the closest analogue to solid atomic metallic hydrogen yet to be synthesized and characterized.
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.