Gliomas represent the majority of malignant central nervous system tumors, with the most aggressive subtype, glioblastoma, accounting for almost 57% of this entity. Type of glioma and its incidence can vary depending on the age of presentation. In turn, outcomes can vary significantly based on the actual type of glioma (histologically and molecularly) and age of the patient, as well as various tumor specific factors such as size, location, comorbidities, etc. In the last decade we have been able to identify key molecular features that have provided us with greater insight into the behavior of these tumors, but the spectrum of treatment options remains limited. In addition, ultimate causes of death in patients with gliomas are variable and stochastic in nature. Given these complicated factors, prognostication for gliomas remains extremely difficult. This review aims to discuss prognostication in low grade versus high grade gliomas, variability in treatment of these tumors, clinical features of poor prognosis, and differences in prognostic understanding between patients, caregivers, and providers. We will also make some general recommendations where appropriate on how to approach this subject from a palliative care perspective.
Ocular manifestations of COVID-19 are still being studied. Posterior segment involvement in viral entities is either direct viral involvement or a delayed immune response to the antigen. A 22-year-old woman presented with history of perceiving absolute inferior scotoma in the right eye for 4 days and history of fever and sore throat 10 days ago. Fundus examination revealed disc edema and vessel tortuosity. Humphreys Field Analyzer confirmed inferior field defect and Optical Coherence Tomography showed superior, nasal and inferior retinal nerve fiber layer thickening in the right eye. Patient was positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcription polymerase chain reaction (RT-PCR) testing. Patient received three doses of injection methylprednisolone over 3 days. There was subjective resolution of scotoma reported 3 weeks posttreatment. We bring forward the first reported case of parainfectious optic neuritis associated with COVID-19.
Alternating electrical fields can disrupt mitosis leading to apoptosis of rapidly dividing cancer cells. The device that utilizes this mechanism is known as tumor-treating fields (TTFields). TTFields can be applied by ceramic transducer arrays on a shaved scalp to deliver the alternating electric activity to patients with glioblastoma (GBM). It has FDA approval for use in both recurrent and newly diagnosed GBM. The objective is to critically appraise the current evidence for the use of TTFields as adjunctive treatment to newly diagnosed GBM. The objective was addressed through the development of a structured, critically appraised topic. We incorporated a clinical scenario, background information, a structured question, literature search strategy, evidence summary, clinical bottom lines, and expert discussion. Participants included consultant and resident neurologists, a medical librarian, clinical epidemiologists, and content experts in the field of neurooncology. A randomized controlled trial was selected for critical appraisal. Patients with newly diagnosed GBM completing standard radiation and chemotherapy with temozolomide (TMZ) were subsequently randomized to receive maintenance TMZ with TTFields, or TMZ alone. With the addition of TTFields, median progression-free survival was 6.7 months compared with 4 months without the addition of TTFields (95% confidence interval, 0.52-0.76; P<0.001) and overall survival was 20.9 months compared with 16.0 months without the addition of TTFields (95% confidence interval, 0.53-0.76; P<0.001). TTFields may increase both progression-free and overall survival in patients receiving standard chemoradiation therapy for GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.