To investigate the effects of postlesion training on motor recovery, we compared the motor recovery of macaque monkeys that had received intensive motor training with those that received no training after a lesion of the primary motor cortex (M1). An ibotenic acid lesion in the M1 digit area resulted in impairment of hand function, with complete loss of digit movement. In the monkeys that had undergone intensive daily training (1 h/day, 5 days/wk) after the lesion, behavioral indexes used to evaluate manual dexterity recovered to the same level as in the prelesion period after 1 or 2 mo of postlesion training period. Relatively independent digit movements, including precision grip (prehension of a small object with finger-to-thumb opposition), were restored in the trained monkeys. Although the behavioral indexes of manual dexterity recovered to some extent in the monkeys without the postlesion training, they remained lower than those in the prelesion period until several months after M1 lesion. The untrained monkeys frequently used alternate grip strategies to grasp a small object with the affected hand, holding food pellets between the tip of the index finger and the dorsum of the thumb. These results suggest that the recovery after M1 lesion includes both use-dependent and use-independent processes and that the recovery of precision grip can be promoted by intensive use of the affected hand in postlesion training.
Objective: Recent studies suggested macrophages were integrated in adipose tissues, interacting with adipocytes, thereby exacerbating inflammatory responses. Persistent low-grade infection by gram-negative bacteria appears to promote atherogenesis. We hypothesized a ligand for tolllike receptor 4 (TLR4), bacterial lipopolysaccharide (LPS), would further exaggerate macrophage-adipocyte interaction. Research Methods and Procedures: RAW264.7 macrophage cell line and differentiated 3T3-L1 preadipocytes were co-cultured using transwell system. As a control, each cell was cultured independently. After incubation of the cells with or without Escherichia coli LPS, tumor necrosis factor (TNF)-␣ and interleukin (IL)-6 production was evaluated. Results: Co-culture of macrophages and adipocytes with low concentration of Escherichia coli LPS (1 ng/mL) markedly up-regulated IL-6 production (nearly 100-fold higher than that of adipocyte culture alone, p Ͻ 0.01), whereas TNF-␣ production was not significantly influenced. This increase was partially inhibited by anti-TNF-␣ neutralizing antibody. Recombinant TNF-␣ and LPS synergistically upregulated IL-6 production in adipocytes. However, this increase did not reach the level of production observed in co-cultures stimulated with LPS. Discussion: A ligand for TLR-4 stimulates macrophages to produce TNF-␣. TNF-␣, thus produced, cooperatively upregulates IL-6 production with other soluble factors secreted either from adipocytes or macrophages in these cells. Markedly up-regulated IL-6 would greatly influence the pathophysiology of diabetes and its vascular complications.
Chronic low-grade infection has been suggested to be associated with metabolic disorder such as diabetes. However, the molecular mechanism underlying this important association is largely unknown. The only clue established so far is that many subjects exhibit elevated levels of C-reactive protein as measured by highly sensitive assay. Here, we hypothesized that adipocyte-macrophage interaction plays a key role in amplifying such low grade infection to the level of influencing metabolic disorders. The presence of macrophages in abdominal adipose tissues was investigated by immunohistochemistry. To see whether molecules associated with acute phase protein, LPS signaling, and persistent recruitment of monocytes, are produced at higher amounts in adipocytes co-cultured with macrophages stimulated with low concentration of LPS (1 ng/ml), we measured serum amyloid A (SAA), LPS binding protein (LBP), soluble CD14 (sCD14), and RANTES levels in culture supernatant of co-cultures. Lastly, we investigated in vivo effect of low-grade LPS infusion on the production of these molecules using obese model mice. The macrophages were certainly identified in abdominal adipose tissues. Investigated molecules, especially LBP, SAA, and RANTES were produced at higher amounts in co-cultures stimulated with LPS compared with the cells without LPS. The ob/ob, and high-fat diet-induced obesity mice produced higher amounts of LBP, SAA, and RANTES one day after LPS infusion (1 ng/ml/g body weight) compared with ob/- and normal-fat fed control mice. Thus, adipocytes and infiltrated macrophages, and their interaction with low endotoxin stimulation appear to play an important role in amplifying and maintaining LPS-induced low-grade inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.