Identification of intrinsic disorder in proteins relies in large part on computational predictors, which demands that their accuracy should be high. Since intrinsic disorder carries out a broad range of cellular functions, it is desirable to couple the disorder and disorder function predictions. We report a computational tool, flDPnn, that provides accurate, fast and comprehensive disorder and disorder function predictions from protein sequences. The recent Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment and results on other test datasets demonstrate that flDPnn offers accurate predictions of disorder, fully disordered proteins and four common disorder functions. These predictions are substantially better than the results of the existing disorder predictors and methods that predict functions of disorder. Ablation tests reveal that the high predictive performance stems from innovative ways used in flDPnn to derive sequence profiles and encode inputs. flDPnn’s webserver is available at http://biomine.cs.vcu.edu/servers/flDPnn/
Molecular recognition features (MoRFs) are short protein-binding regions that undergo disorder-to-order transitions (induced folding) upon binding protein partners. These regions are abundant in nature and can be predicted from protein sequences based on their distinctive sequence signatures. This first-of-its-kind survey covers 14 MoRF predictors and six related methods for the prediction of short protein-binding linear motifs, disordered protein-binding regions and semi-disordered regions. We show that the development of MoRF predictors has accelerated in the recent years. These predictors depend on machine learning-derived models that were generated using training datasets where MoRFs are annotated using putative disorder. Our analysis reveals that they generate accurate predictions. We identified eight methods that offer area under the ROC curve (AUC) ≥ 0.7 on experimentally-validated test datasets. We show that modern MoRF predictors accurately find experimentally annotated MoRFs even though they were trained using the putative disorder annotations. They are relatively highly-cited, particularly the methods available as webservers that on average secure three times more citations than methods without this option. MoRF predictions contribute to the experimental discovery of protein-protein interactions, annotation of protein functions and computational analysis of a variety of proteomes, protein families, and pathways. We outline future development and application directions for these tools, stressing the importance to develop novel tools that would target interactions of disordered regions with other types of partners.
Experimental annotations of intrinsic disorder are available for 0.1% of 147 000 000 of currently sequenced proteins. Over 60 sequence-based disorder predictors were developed to help bridge this gap. Current benchmarks of these methods assess predictive performance on datasets of proteins; however, predictions are often interpreted for individual proteins. We demonstrate that the protein-level predictive performance varies substantially from the dataset-level benchmarks. Thus, we perform first-of-its-kind protein-level assessment for 13 popular disorder predictors using 6200 disorder-annotated proteins. We show that the protein-level distributions are substantially skewed toward high predictive quality while having long tails of poor predictions. Consequently, between 57% and 75% proteins secure higher predictive performance than the currently used dataset-level assessment suggests, but as many as 30% of proteins that are located in the long tails suffer low predictive performance. These proteins typically have relatively high amounts of disorder, in contrast to the mostly structured proteins that are predicted accurately by all 13 methods. Interestingly, each predictor provides the most accurate results for some number of proteins, while the best-performing at the dataset-level method is in fact the best for only about 30% of proteins. Moreover, the majority of proteins are predicted more accurately than the dataset-level performance of the most accurate tool by at least four disorder predictors. While these results suggests that disorder predictors outperform their current benchmark performance for the majority of proteins and that they complement each other, novel tools that accurately identify the hard-to-predict proteins and that make accurate predictions for these proteins are needed.
We present DescribePROT, the database of predicted amino acid-level descriptors of structure and function of proteins. DescribePROT delivers a comprehensive collection of 13 complementary descriptors predicted using 10 popular and accurate algorithms for 83 complete proteomes that cover key model organisms. The current version includes 7.8 billion predictions for close to 600 million amino acids in 1.4 million proteins. The descriptors encompass sequence conservation, position specific scoring matrix, secondary structure, solvent accessibility, intrinsic disorder, disordered linkers, signal peptides, MoRFs and interactions with proteins, DNA and RNAs. Users can search DescribePROT by the amino acid sequence and the UniProt accession number and entry name. The pre-computed results are made available instantaneously. The predictions can be accesses via an interactive graphical interface that allows simultaneous analysis of multiple descriptors and can be also downloaded in structured formats at the protein, proteome and whole database scale. The putative annotations included by DescriPROT are useful for a broad range of studies, including: investigations of protein function, applied projects focusing on therapeutics and diseases, and in the development of predictors for other protein sequence descriptors. Future releases will expand the coverage of DescribePROT. DescribePROT can be accessed at http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.