This work presents a study of chromatic and luminance stimuli in low-, medium-, and high-frequency stimulation to evoke steady-state visual evoked potential (SSVEP) in the behind-the-ears area. Twelve healthy subjects participated in this study. The electroencephalogram (EEG) was measured on occipital (Oz) and left and right temporal (TP9 and TP10) areas. The SSVEP was evaluated in terms of amplitude, signal-to-noise ratio (SNR), and detection accuracy using power spectral density analysis (PSDA), canonical correlation analysis (CCA), and temporally local multivariate synchronization index (TMSI) methods. It was found that stimuli based on suitable color and luminance elicited stronger SSVEP in the behind-the-ears area, and that the response of the SSVEP was related to the flickering frequency and the color of the stimuli. Thus, green-red stimulus elicited the highest SSVEP in medium-frequency range, and green-blue stimulus elicited the highest SSVEP in high-frequency range, reaching detection accuracy rates higher than 80%. These findings will aid in the development of more comfortable, accurate and stable BCIs with electrodes positioned on the behind-the-ears (hairless) areas.
Recently, studies on cycling-based brain–computer interfaces (BCIs) have been standing out due to their potential for lower-limb recovery. In this scenario, the behaviors of the sensory motor rhythms and the brain connectivity present themselves as sources of information that can contribute to interpreting the cortical effect of these technologies. This study aims to analyze how sensory motor rhythms and cortical connectivity behave when volunteers command reactive motor imagery (MI) BCI that provides passive pedaling feedback. We studied 8 healthy subjects who performed pedaling MI to command an electroencephalography (EEG)-based BCI with a motorized pedal to receive passive movements as feedback. The EEG data were analyzed under the following four conditions: resting, MI calibration, MI online, and receiving passive pedaling (on-line phase). Most subjects produced, over the foot area, significant event-related desynchronization (ERD) patterns around Cz when performing MI and receiving passive pedaling. The sharpest decrease was found for the low beta band. The connectivity results revealed an exchange of information between the supplementary motor area (SMA) and parietal regions during MI and passive pedaling. Our findings point to the primary motor cortex activation for most participants and the connectivity between SMA and parietal regions during pedaling MI and passive pedaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.