A 98.1 Kb genomic region from B. pumilus 15.1, a strain isolated as an entomopathogen toward C. capitata, the Mediterranean fruit fly, has been characterised in search of potential virulence factors. The 98.1 Kb region shows a high number of phage-related protein-coding ORFs. Two regions with different phylogenetic origins, one with 28.7 Kb in size, highly conserved in Bacillus strains, and one with 60.2 Kb in size, scarcely found in Bacillus genomes are differentiated. The content of each region is thoroughly characterised using comparative studies. This study demonstrates that these two regions are responsible for the production, after mitomycin induction, of a phage-like particle that packages DNA from the host bacterium and a novel phage for B. pumilus, respectively. Both the phage-like particles and the novel phage are observed and characterised by TEM, and some of their structural proteins are identified by protein fingerprinting. In addition, it is found that the phage-like particle shows bacteriocin activity toward other B. pumilus strains. The effect of the phage-like particles and the phage in the toxicity of the strain toward C. capitata is also evaluated.
Summary Bacillus pumilus strain 15.1 was previously found to cause larval mortality in the Med‐fly Ceratitis capitata and was shown to produce crystals in association with the spore. As parasporal crystals are well‐known as invertebrate‐active toxins in entomopathogenic bacteria such as Bacillus thuringiensis (Cry and Cyt toxins) and Lysinibacillus sphaericus (Bin and Cry toxins), the B. pumilus crystals were characterized. The crystals were composed of a 45 kDa protein that was identified as an oxalate decarboxylase by peptide mass fingerprinting, N‐terminal sequencing and by comparison with the genome sequence of strain 15.1. Synthesis of crystals by a plasmid‐cured derivative of strain 15.1 (produced using a novel curing strategy), demonstrated that the oxalate decarboxylase was encoded chromosomally. Crystals spontaneously solubilized when kept at low temperatures, and the protein produced was resistant to trypsin treatment. The insoluble crystals produced by B. pumilus 15.1 did not show significant toxicity when bioassayed against C. capitata larvae, but once the OxdD protein was solubilized, an increase of toxicity was observed. We also demonstrate that the OxdD present in the crystals has oxalate decarboxylate activity as the formation of formate was detected, which suggests a possible mechanism for B. pumilus 15.1 activity. To our knowledge, the characterization of the B. pumilus crystals as oxalate decarboxylase is the first report of the natural production of parasporal inclusions of an enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.