Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed.
Nowadays, many citizens have busy days that make finding time for physical activity difficult. Thus, it is important to provide citizens with tools that allow them to introduce physical activity into their lives as part of the day’s routine. This article proposes an app for an electric pedal-assist-system (PAS) bicycle that increases the pedaling intensity so the bicyclist can achieve higher and higher levels of physical activity. The app includes personalized assist levels that have been adapted to the user’s strength/ability and a profile of the route, segmented according to its slopes. Additionally, a social component motivates interaction and competition between users based on a scoring system that shows the level of their performances. To test the training module, a case study in three different European countries lasted four months and included nine people who traveled 551 routes. The electric PAS bicycle with the app that increases intensity of physical activity shows promise for increasing levels of physical activity as a regular part of the day.
People who suffer from any kind of motor difficulty face serious complications to autonomously move in their daily lives. However, a growing number research projects which propose different powered wheelchairs control systems are arising. Despite of the interest of the research community in the area, there is no platform that allows an easy integration of various control methods that make use of heterogeneous sensors and computationally demanding algorithms. In this work, an architecture based on virtual organizations of agents is proposed that makes use of a flexible and scalable communication protocol that allows the deployment of embedded agents in computationally limited devices. In order to validate the proper functioning of the proposed system, it has been integrated into a conventional wheelchair and a set of alternative control interfaces have been developed and deployed, including a portable electroencephalography system, a voice interface or as specifically designed smartphone application. A set of tests were conducted to test both the platform adequacy and the accuracy and ease of use of the proposed control systems yielding positive results that can be useful in further wheelchair interfaces design and implementation.
Abstract. The recent increase in smart meters installations in households and small bussiness by electric companies has led to interest in monitoring load techniques in order to provide better quality service and get useful information about appliance usage and user consumption behavior. This works summarizes the current state of the art in Non Intrusive Load Monitoring from its beginning, describes the main process followed in the literature to perform this technique and shows current methods and techniques followed nowadays. The possible application of this techniques in the context of ambient intelligence, energy efficiency, occupancy detection are described. This work also points the current challenges in the field and the future lines of research in this broad topic.
The main application of this work is to perform 3D simulations of different work environments, which can help to establish the accessibility problems that may occur in the corresponding real-world environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.