Broadly neutralizing antibodies (bnAbs) against highly variable viral pathogens are much sought-after to treat or protect against global circulating viruses. We have probed the neutralizing antibody repertoires of four HIV-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies (MAbs) that neutralize broadly across clades. Many of the new MAbs are almost 10-fold more potent than the recently described PG9, PG16, and VRC01 bnMAbs and 100-fold more potent than the original prototype HIV bnMAbs1–3. The MAbs largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV bnMAbs now available reveals that certain combinations of antibodies provide significantly more favorable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV bnMAbs, from several donors, that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.
The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of Fabs PGT 127 and 128 with Man9 at 1.65 and 1.29 Å resolution, respectively, and glycan binding data delineate a specific high mannose binding site. Fab PGT 128 complexed with a fully-glycosylated gp120 outer domain at 3.25 Å reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short β-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 IgGs may be mediated by cross-linking Env trimers on the viral surface.
SUMMARY
Broadly neutralizing antibodies to HIV are much sought-after (a) to guide vaccine design, both as templates and to inform on the authenticity of vaccine candidates, (b) to assist in structural studies and (c) as potential therapeutics. However, the number of targets on the viral envelope spike for such antibodies is limited. Here, we describe a set of human monoclonal antibodies that define a previously undefined target on HIV Env. The antibodies recognize a glycan-dependent epitope on the prefusion conformation of gp41 and unambiguously distinguish cleaved from uncleaved Env trimers, an important property given increasing evidence that cleavage is required for vaccine candidates that seek to mimic the functional HIV envelope spike. The availability of this set of antibodies expands the number of vaccine targets on HIV and provides reagents to characterize the native envelope spike.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.